Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > swopolem | Structured version Visualization version GIF version |
Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.) |
Ref | Expression |
---|---|
swopolem.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
Ref | Expression |
---|---|
swopolem | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swopolem.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) | |
2 | 1 | ralrimivvva 2955 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
3 | breq1 4586 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑦 ↔ 𝑋𝑅𝑦)) | |
4 | breq1 4586 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥𝑅𝑧 ↔ 𝑋𝑅𝑧)) | |
5 | 4 | orbi1d 735 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦))) |
6 | 3, 5 | imbi12d 333 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑦 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦)))) |
7 | breq2 4587 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝑅𝑦 ↔ 𝑋𝑅𝑌)) | |
8 | breq2 4587 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑌)) | |
9 | 8 | orbi2d 734 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦) ↔ (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌))) |
10 | 7, 9 | imbi12d 333 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝑅𝑦 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑦)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌)))) |
11 | breq2 4587 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋𝑅𝑧 ↔ 𝑋𝑅𝑍)) | |
12 | breq1 4586 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧𝑅𝑌 ↔ 𝑍𝑅𝑌)) | |
13 | 11, 12 | orbi12d 742 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌) ↔ (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) |
14 | 13 | imbi2d 329 | . . 3 ⊢ (𝑧 = 𝑍 → ((𝑋𝑅𝑌 → (𝑋𝑅𝑧 ∨ 𝑧𝑅𝑌)) ↔ (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌)))) |
15 | 6, 10, 14 | rspc3v 3296 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑥𝑅𝑦 → (𝑥𝑅𝑧 ∨ 𝑧𝑅𝑦)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌)))) |
16 | 2, 15 | mpan9 485 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ 𝑍 ∈ 𝐴)) → (𝑋𝑅𝑌 → (𝑋𝑅𝑍 ∨ 𝑍𝑅𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 class class class wbr 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 |
This theorem is referenced by: swoer 7659 swoord1 7660 swoord2 7661 |
Copyright terms: Public domain | W3C validator |