MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppval Structured version   Visualization version   GIF version

Theorem suppval 7184
Description: The value of the operation constructing the support of a function. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 6-Apr-2019.)
Assertion
Ref Expression
suppval ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
Distinct variable groups:   𝑖,𝑋   𝑖,𝑍
Allowed substitution hints:   𝑉(𝑖)   𝑊(𝑖)

Proof of Theorem suppval
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-supp 7183 . . 3 supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
21a1i 11 . 2 ((𝑋𝑉𝑍𝑊) → supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}))
3 dmeq 5246 . . . . 5 (𝑥 = 𝑋 → dom 𝑥 = dom 𝑋)
43adantr 480 . . . 4 ((𝑥 = 𝑋𝑧 = 𝑍) → dom 𝑥 = dom 𝑋)
5 imaeq1 5380 . . . . . 6 (𝑥 = 𝑋 → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖}))
65adantr 480 . . . . 5 ((𝑥 = 𝑋𝑧 = 𝑍) → (𝑥 “ {𝑖}) = (𝑋 “ {𝑖}))
7 sneq 4135 . . . . . 6 (𝑧 = 𝑍 → {𝑧} = {𝑍})
87adantl 481 . . . . 5 ((𝑥 = 𝑋𝑧 = 𝑍) → {𝑧} = {𝑍})
96, 8neeq12d 2843 . . . 4 ((𝑥 = 𝑋𝑧 = 𝑍) → ((𝑥 “ {𝑖}) ≠ {𝑧} ↔ (𝑋 “ {𝑖}) ≠ {𝑍}))
104, 9rabeqbidv 3168 . . 3 ((𝑥 = 𝑋𝑧 = 𝑍) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
1110adantl 481 . 2 (((𝑋𝑉𝑍𝑊) ∧ (𝑥 = 𝑋𝑧 = 𝑍)) → {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}} = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
12 elex 3185 . . 3 (𝑋𝑉𝑋 ∈ V)
1312adantr 480 . 2 ((𝑋𝑉𝑍𝑊) → 𝑋 ∈ V)
14 elex 3185 . . 3 (𝑍𝑊𝑍 ∈ V)
1514adantl 481 . 2 ((𝑋𝑉𝑍𝑊) → 𝑍 ∈ V)
16 dmexg 6989 . . . 4 (𝑋𝑉 → dom 𝑋 ∈ V)
1716adantr 480 . . 3 ((𝑋𝑉𝑍𝑊) → dom 𝑋 ∈ V)
18 rabexg 4739 . . 3 (dom 𝑋 ∈ V → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V)
1917, 18syl 17 . 2 ((𝑋𝑉𝑍𝑊) → {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}} ∈ V)
202, 11, 13, 15, 19ovmpt2d 6686 1 ((𝑋𝑉𝑍𝑊) → (𝑋 supp 𝑍) = {𝑖 ∈ dom 𝑋 ∣ (𝑋 “ {𝑖}) ≠ {𝑍}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  {csn 4125  dom cdm 5038  cima 5041  (class class class)co 6549  cmpt2 6551   supp csupp 7182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-supp 7183
This theorem is referenced by:  suppvalbr  7186  supp0  7187  suppval1  7188  suppssdm  7195  suppsnop  7196  ressuppss  7201  ressuppssdif  7203
  Copyright terms: Public domain W3C validator