Step | Hyp | Ref
| Expression |
1 | | fndm 5904 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) |
2 | 1 | eleq2d 2673 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴)) |
3 | 2 | ad2antrr 758 |
. . . . . . . . 9
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴)) |
4 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝐺‘𝑥) = (𝐺‘𝑦)) |
5 | 4 | eqeq1d 2612 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝐺‘𝑥) = 𝑍 ↔ (𝐺‘𝑦) = 𝑍)) |
6 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
7 | 6 | eqeq1d 2612 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = 𝑍 ↔ (𝐹‘𝑦) = 𝑍)) |
8 | 5, 7 | imbi12d 333 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) ↔ ((𝐺‘𝑦) = 𝑍 → (𝐹‘𝑦) = 𝑍))) |
9 | 8 | rspcv 3278 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → ((𝐺‘𝑦) = 𝑍 → (𝐹‘𝑦) = 𝑍))) |
10 | 3, 9 | syl6bi 242 |
. . . . . . . 8
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (𝑦 ∈ dom 𝐹 → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → ((𝐺‘𝑦) = 𝑍 → (𝐹‘𝑦) = 𝑍)))) |
11 | 10 | com23 84 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → (𝑦 ∈ dom 𝐹 → ((𝐺‘𝑦) = 𝑍 → (𝐹‘𝑦) = 𝑍)))) |
12 | 11 | imp31 447 |
. . . . . 6
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐺‘𝑦) = 𝑍 → (𝐹‘𝑦) = 𝑍)) |
13 | 12 | necon3d 2803 |
. . . . 5
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) ∧ 𝑦 ∈ dom 𝐹) → ((𝐹‘𝑦) ≠ 𝑍 → (𝐺‘𝑦) ≠ 𝑍)) |
14 | 13 | ss2rabdv 3646 |
. . . 4
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐹 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
15 | | simpr1 1060 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → 𝐴 ⊆ 𝐵) |
16 | 1 | ad2antrr 758 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → dom 𝐹 = 𝐴) |
17 | | fndm 5904 |
. . . . . . . 8
⊢ (𝐺 Fn 𝐵 → dom 𝐺 = 𝐵) |
18 | 17 | ad2antlr 759 |
. . . . . . 7
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → dom 𝐺 = 𝐵) |
19 | 15, 16, 18 | 3sstr4d 3611 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → dom 𝐹 ⊆ dom 𝐺) |
20 | 19 | adantr 480 |
. . . . 5
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → dom 𝐹 ⊆ dom 𝐺) |
21 | | rabss2 3648 |
. . . . 5
⊢ (dom
𝐹 ⊆ dom 𝐺 → {𝑦 ∈ dom 𝐹 ∣ (𝐺‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
22 | 20, 21 | syl 17 |
. . . 4
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐺‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
23 | 14, 22 | sstrd 3578 |
. . 3
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
24 | | fnfun 5902 |
. . . . . . 7
⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
25 | 24 | ad2antrr 758 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → Fun 𝐹) |
26 | | simpl 472 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → 𝐹 Fn 𝐴) |
27 | | ssexg 4732 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) |
28 | 27 | 3adant3 1074 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐴 ∈ V) |
29 | | fnex 6386 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ V) → 𝐹 ∈ V) |
30 | 26, 28, 29 | syl2an 493 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → 𝐹 ∈ V) |
31 | | simpr3 1062 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → 𝑍 ∈ 𝑊) |
32 | | suppval1 7188 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍}) |
33 | 25, 30, 31, 32 | syl3anc 1318 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (𝐹 supp 𝑍) = {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍}) |
34 | | fnfun 5902 |
. . . . . . 7
⊢ (𝐺 Fn 𝐵 → Fun 𝐺) |
35 | 34 | ad2antlr 759 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → Fun 𝐺) |
36 | | simpr 476 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) → 𝐺 Fn 𝐵) |
37 | | simp2 1055 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝐵 ∈ 𝑉) |
38 | | fnex 6386 |
. . . . . . 7
⊢ ((𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐺 ∈ V) |
39 | 36, 37, 38 | syl2an 493 |
. . . . . 6
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → 𝐺 ∈ V) |
40 | | suppval1 7188 |
. . . . . 6
⊢ ((Fun
𝐺 ∧ 𝐺 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
41 | 35, 39, 31, 40 | syl3anc 1318 |
. . . . 5
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (𝐺 supp 𝑍) = {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍}) |
42 | 33, 41 | sseq12d 3597 |
. . . 4
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍})) |
43 | 42 | adantr 480 |
. . 3
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → ((𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍) ↔ {𝑦 ∈ dom 𝐹 ∣ (𝐹‘𝑦) ≠ 𝑍} ⊆ {𝑦 ∈ dom 𝐺 ∣ (𝐺‘𝑦) ≠ 𝑍})) |
44 | 23, 43 | mpbird 246 |
. 2
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) ∧ ∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍)) |
45 | 44 | ex 449 |
1
⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊)) → (∀𝑥 ∈ 𝐴 ((𝐺‘𝑥) = 𝑍 → (𝐹‘𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (𝐺 supp 𝑍))) |