Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  supnub Structured version   Visualization version   GIF version

Theorem supnub 8251
 Description: An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004.)
Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
supcl.2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
Assertion
Ref Expression
supnub (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝐶𝑅𝑧) → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑧,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦)

Proof of Theorem supnub
StepHypRef Expression
1 supmo.1 . . . . . 6 (𝜑𝑅 Or 𝐴)
2 supcl.2 . . . . . 6 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
31, 2suplub 8249 . . . . 5 (𝜑 → ((𝐶𝐴𝐶𝑅sup(𝐵, 𝐴, 𝑅)) → ∃𝑧𝐵 𝐶𝑅𝑧))
43expdimp 452 . . . 4 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ∃𝑧𝐵 𝐶𝑅𝑧))
5 dfrex2 2979 . . . 4 (∃𝑧𝐵 𝐶𝑅𝑧 ↔ ¬ ∀𝑧𝐵 ¬ 𝐶𝑅𝑧)
64, 5syl6ib 240 . . 3 ((𝜑𝐶𝐴) → (𝐶𝑅sup(𝐵, 𝐴, 𝑅) → ¬ ∀𝑧𝐵 ¬ 𝐶𝑅𝑧))
76con2d 128 . 2 ((𝜑𝐶𝐴) → (∀𝑧𝐵 ¬ 𝐶𝑅𝑧 → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
87expimpd 627 1 (𝜑 → ((𝐶𝐴 ∧ ∀𝑧𝐵 ¬ 𝐶𝑅𝑧) → ¬ 𝐶𝑅sup(𝐵, 𝐴, 𝑅)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   class class class wbr 4583   Or wor 4958  supcsup 8229 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-po 4959  df-so 4960  df-iota 5768  df-riota 6511  df-sup 8231 This theorem is referenced by:  dgrlb  23796  supssd  28870
 Copyright terms: Public domain W3C validator