MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supnfcls Structured version   Visualization version   GIF version

Theorem supnfcls 21634
Description: The filter of supersets of 𝑋𝑈 does not cluster at any point of the open set 𝑈. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
supnfcls ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → ¬ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋   𝑥,𝑈
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem supnfcls
StepHypRef Expression
1 disjdif 3992 . 2 (𝑈 ∩ (𝑋𝑈)) = ∅
2 simpr 476 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}))
3 simpl2 1058 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝑈𝐽)
4 simpl3 1059 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝐴𝑈)
5 difss 3699 . . . . . . 7 (𝑋𝑈) ⊆ 𝑋
6 simpl1 1057 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → 𝐽 ∈ (TopOn‘𝑋))
7 toponmax 20543 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
8 elpw2g 4754 . . . . . . . 8 (𝑋𝐽 → ((𝑋𝑈) ∈ 𝒫 𝑋 ↔ (𝑋𝑈) ⊆ 𝑋))
96, 7, 83syl 18 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → ((𝑋𝑈) ∈ 𝒫 𝑋 ↔ (𝑋𝑈) ⊆ 𝑋))
105, 9mpbiri 247 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑋𝑈) ∈ 𝒫 𝑋)
11 ssid 3587 . . . . . . 7 (𝑋𝑈) ⊆ (𝑋𝑈)
1211a1i 11 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑋𝑈) ⊆ (𝑋𝑈))
13 sseq2 3590 . . . . . . 7 (𝑥 = (𝑋𝑈) → ((𝑋𝑈) ⊆ 𝑥 ↔ (𝑋𝑈) ⊆ (𝑋𝑈)))
1413elrab 3331 . . . . . 6 ((𝑋𝑈) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥} ↔ ((𝑋𝑈) ∈ 𝒫 𝑋 ∧ (𝑋𝑈) ⊆ (𝑋𝑈)))
1510, 12, 14sylanbrc 695 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑋𝑈) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})
16 fclsopni 21629 . . . . 5 ((𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}) ∧ (𝑈𝐽𝐴𝑈 ∧ (𝑋𝑈) ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑈 ∩ (𝑋𝑈)) ≠ ∅)
172, 3, 4, 15, 16syl13anc 1320 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) ∧ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})) → (𝑈 ∩ (𝑋𝑈)) ≠ ∅)
1817ex 449 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → (𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}) → (𝑈 ∩ (𝑋𝑈)) ≠ ∅))
1918necon2bd 2798 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → ((𝑈 ∩ (𝑋𝑈)) = ∅ → ¬ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥})))
201, 19mpi 20 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑈) → ¬ 𝐴 ∈ (𝐽 fClus {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑈) ⊆ 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  {crab 2900  cdif 3537  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108  cfv 5804  (class class class)co 6549  TopOnctopon 20518   fClus cfcls 21550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-top 20521  df-topon 20523  df-cld 20633  df-ntr 20634  df-cls 20635  df-fil 21460  df-fcls 21555
This theorem is referenced by:  fclscf  21639
  Copyright terms: Public domain W3C validator