Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucel | Structured version Visualization version GIF version |
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.) |
Ref | Expression |
---|---|
sucel | ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3044 | . 2 ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = suc 𝐴) | |
2 | dfcleq 2604 | . . . 4 ⊢ (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴)) | |
3 | vex 3176 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
4 | 3 | elsuc 5711 | . . . . . 6 ⊢ (𝑦 ∈ suc 𝐴 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
5 | 4 | bibi2i 326 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴) ↔ (𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
6 | 5 | albii 1737 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
7 | 2, 6 | bitri 263 | . . 3 ⊢ (𝑥 = suc 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
8 | 7 | rexbii 3023 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = suc 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
9 | 1, 8 | bitri 263 | 1 ⊢ (suc 𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∨ wo 382 ∀wal 1473 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 suc csuc 5642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-v 3175 df-un 3545 df-sn 4126 df-suc 5646 |
This theorem is referenced by: axinf2 8420 zfinf2 8422 |
Copyright terms: Public domain | W3C validator |