Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsaliuncllem Structured version   Visualization version   GIF version

Theorem subsaliuncllem 39251
Description: A subspace sigma-algebra is closed under countable union. This is Lemma 121A (iii) of [Fremlin1] p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
subsaliuncllem.f 𝑦𝜑
subsaliuncllem.s (𝜑𝑆𝑉)
subsaliuncllem.g 𝐺 = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
subsaliuncllem.e 𝐸 = (𝐻𝐺)
subsaliuncllem.h (𝜑𝐻 Fn ran 𝐺)
subsaliuncllem.y (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑦)
Assertion
Ref Expression
subsaliuncllem (𝜑 → ∃𝑒 ∈ (𝑆𝑚 ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
Distinct variable groups:   𝐷,𝑒   𝑥,𝐷   𝑒,𝐸,𝑛   𝑥,𝐸,𝑛   𝑒,𝐹   𝑥,𝐹   𝑦,𝐺   𝑦,𝐻   𝑆,𝑒,𝑛   𝑥,𝑆   𝑦,𝑆,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑒)   𝐷(𝑦,𝑛)   𝐸(𝑦)   𝐹(𝑦,𝑛)   𝐺(𝑥,𝑒,𝑛)   𝐻(𝑥,𝑒,𝑛)   𝑉(𝑥,𝑦,𝑒,𝑛)

Proof of Theorem subsaliuncllem
StepHypRef Expression
1 subsaliuncllem.e . . 3 𝐸 = (𝐻𝐺)
2 subsaliuncllem.h . . . . . . 7 (𝜑𝐻 Fn ran 𝐺)
3 subsaliuncllem.f . . . . . . . 8 𝑦𝜑
4 vex 3176 . . . . . . . . . . . . . 14 𝑦 ∈ V
5 subsaliuncllem.g . . . . . . . . . . . . . . 15 𝐺 = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
65elrnmpt 5293 . . . . . . . . . . . . . 14 (𝑦 ∈ V → (𝑦 ∈ ran 𝐺 ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
74, 6ax-mp 5 . . . . . . . . . . . . 13 (𝑦 ∈ ran 𝐺 ↔ ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
87biimpi 205 . . . . . . . . . . . 12 (𝑦 ∈ ran 𝐺 → ∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
9 id 22 . . . . . . . . . . . . . . . 16 (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
10 ssrab2 3650 . . . . . . . . . . . . . . . . 17 {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ⊆ 𝑆
1110a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ⊆ 𝑆)
129, 11eqsstrd 3602 . . . . . . . . . . . . . . 15 (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦𝑆)
1312a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦𝑆))
1413rexlimiv 3009 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦𝑆)
1514a1i 11 . . . . . . . . . . . 12 (𝑦 ∈ ran 𝐺 → (∃𝑛 ∈ ℕ 𝑦 = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} → 𝑦𝑆))
168, 15mpd 15 . . . . . . . . . . 11 (𝑦 ∈ ran 𝐺𝑦𝑆)
1716adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐺) → 𝑦𝑆)
18 subsaliuncllem.y . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑦)
1918r19.21bi 2916 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐺) → (𝐻𝑦) ∈ 𝑦)
2017, 19sseldd 3569 . . . . . . . . 9 ((𝜑𝑦 ∈ ran 𝐺) → (𝐻𝑦) ∈ 𝑆)
2120ex 449 . . . . . . . 8 (𝜑 → (𝑦 ∈ ran 𝐺 → (𝐻𝑦) ∈ 𝑆))
223, 21ralrimi 2940 . . . . . . 7 (𝜑 → ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑆)
232, 22jca 553 . . . . . 6 (𝜑 → (𝐻 Fn ran 𝐺 ∧ ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑆))
24 ffnfv 6295 . . . . . 6 (𝐻:ran 𝐺𝑆 ↔ (𝐻 Fn ran 𝐺 ∧ ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑆))
2523, 24sylibr 223 . . . . 5 (𝜑𝐻:ran 𝐺𝑆)
26 eqid 2610 . . . . . . . . 9 {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}
27 subsaliuncllem.s . . . . . . . . 9 (𝜑𝑆𝑉)
2826, 27rabexd 4741 . . . . . . . 8 (𝜑 → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
2928ralrimivw 2950 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
305fnmpt 5933 . . . . . . 7 (∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V → 𝐺 Fn ℕ)
3129, 30syl 17 . . . . . 6 (𝜑𝐺 Fn ℕ)
32 dffn3 5967 . . . . . 6 (𝐺 Fn ℕ ↔ 𝐺:ℕ⟶ran 𝐺)
3331, 32sylib 207 . . . . 5 (𝜑𝐺:ℕ⟶ran 𝐺)
34 fco 5971 . . . . 5 ((𝐻:ran 𝐺𝑆𝐺:ℕ⟶ran 𝐺) → (𝐻𝐺):ℕ⟶𝑆)
3525, 33, 34syl2anc 691 . . . 4 (𝜑 → (𝐻𝐺):ℕ⟶𝑆)
36 nnex 10903 . . . . . 6 ℕ ∈ V
3736a1i 11 . . . . 5 (𝜑 → ℕ ∈ V)
3827, 37elmapd 7758 . . . 4 (𝜑 → ((𝐻𝐺) ∈ (𝑆𝑚 ℕ) ↔ (𝐻𝐺):ℕ⟶𝑆))
3935, 38mpbird 246 . . 3 (𝜑 → (𝐻𝐺) ∈ (𝑆𝑚 ℕ))
401, 39syl5eqel 2692 . 2 (𝜑𝐸 ∈ (𝑆𝑚 ℕ))
4133ffvelrnda 6267 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) ∈ ran 𝐺)
4218adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑦)
43 fveq2 6103 . . . . . . . . 9 (𝑦 = (𝐺𝑛) → (𝐻𝑦) = (𝐻‘(𝐺𝑛)))
44 id 22 . . . . . . . . 9 (𝑦 = (𝐺𝑛) → 𝑦 = (𝐺𝑛))
4543, 44eleq12d 2682 . . . . . . . 8 (𝑦 = (𝐺𝑛) → ((𝐻𝑦) ∈ 𝑦 ↔ (𝐻‘(𝐺𝑛)) ∈ (𝐺𝑛)))
4645rspcva 3280 . . . . . . 7 (((𝐺𝑛) ∈ ran 𝐺 ∧ ∀𝑦 ∈ ran 𝐺(𝐻𝑦) ∈ 𝑦) → (𝐻‘(𝐺𝑛)) ∈ (𝐺𝑛))
4741, 42, 46syl2anc 691 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐻‘(𝐺𝑛)) ∈ (𝐺𝑛))
4833ffund 5962 . . . . . . . . 9 (𝜑 → Fun 𝐺)
4948adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → Fun 𝐺)
50 simpr 476 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
515dmeqi 5247 . . . . . . . . . . . . 13 dom 𝐺 = dom (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
5251a1i 11 . . . . . . . . . . . 12 (𝜑 → dom 𝐺 = dom (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
53 dmmptg 5549 . . . . . . . . . . . . 13 (∀𝑛 ∈ ℕ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V → dom (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = ℕ)
5429, 53syl 17 . . . . . . . . . . . 12 (𝜑 → dom (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}) = ℕ)
5552, 54eqtrd 2644 . . . . . . . . . . 11 (𝜑 → dom 𝐺 = ℕ)
5655eqcomd 2616 . . . . . . . . . 10 (𝜑 → ℕ = dom 𝐺)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ℕ = dom 𝐺)
5850, 57eleqtrd 2690 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ dom 𝐺)
5949, 58, 1fvcod 38418 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) = (𝐻‘(𝐺𝑛)))
605a1i 11 . . . . . . . . 9 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)}))
6128adantr 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ∈ V)
6260, 61fvmpt2d 6202 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
6362eqcomd 2616 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} = (𝐺𝑛))
6459, 63eleq12d 2682 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) ∈ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ↔ (𝐻‘(𝐺𝑛)) ∈ (𝐺𝑛)))
6547, 64mpbird 246 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐸𝑛) ∈ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)})
66 ineq1 3769 . . . . . . 7 (𝑥 = (𝐸𝑛) → (𝑥𝐷) = ((𝐸𝑛) ∩ 𝐷))
6766eqeq2d 2620 . . . . . 6 (𝑥 = (𝐸𝑛) → ((𝐹𝑛) = (𝑥𝐷) ↔ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)))
6867elrab 3331 . . . . 5 ((𝐸𝑛) ∈ {𝑥𝑆 ∣ (𝐹𝑛) = (𝑥𝐷)} ↔ ((𝐸𝑛) ∈ 𝑆 ∧ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)))
6965, 68sylib 207 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐸𝑛) ∈ 𝑆 ∧ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)))
7069simprd 478 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷))
7170ralrimiva 2949 . 2 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷))
72 fveq1 6102 . . . . . 6 (𝑒 = 𝐸 → (𝑒𝑛) = (𝐸𝑛))
7372ineq1d 3775 . . . . 5 (𝑒 = 𝐸 → ((𝑒𝑛) ∩ 𝐷) = ((𝐸𝑛) ∩ 𝐷))
7473eqeq2d 2620 . . . 4 (𝑒 = 𝐸 → ((𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) ↔ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)))
7574ralbidv 2969 . . 3 (𝑒 = 𝐸 → (∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷) ↔ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)))
7675rspcev 3282 . 2 ((𝐸 ∈ (𝑆𝑚 ℕ) ∧ ∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝐸𝑛) ∩ 𝐷)) → ∃𝑒 ∈ (𝑆𝑚 ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
7740, 71, 76syl2anc 691 1 (𝜑 → ∃𝑒 ∈ (𝑆𝑚 ℕ)∀𝑛 ∈ ℕ (𝐹𝑛) = ((𝑒𝑛) ∩ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wnf 1699  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540  cmpt 4643  dom cdm 5038  ran crn 5039  ccom 5042  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  cn 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-map 7746  df-nn 10898
This theorem is referenced by:  subsaliuncl  39252
  Copyright terms: Public domain W3C validator