MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgunit Structured version   Visualization version   GIF version

Theorem subrgunit 18621
Description: An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgugrp.1 𝑆 = (𝑅s 𝐴)
subrgugrp.2 𝑈 = (Unit‘𝑅)
subrgugrp.3 𝑉 = (Unit‘𝑆)
subrgunit.4 𝐼 = (invr𝑅)
Assertion
Ref Expression
subrgunit (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))

Proof of Theorem subrgunit
StepHypRef Expression
1 subrgugrp.1 . . . . 5 𝑆 = (𝑅s 𝐴)
2 subrgugrp.2 . . . . 5 𝑈 = (Unit‘𝑅)
3 subrgugrp.3 . . . . 5 𝑉 = (Unit‘𝑆)
41, 2, 3subrguss 18618 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑉𝑈)
54sselda 3568 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝑈)
6 eqid 2610 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
76, 3unitcl 18482 . . . . 5 (𝑋𝑉𝑋 ∈ (Base‘𝑆))
87adantl 481 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋 ∈ (Base‘𝑆))
91subrgbas 18612 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
109adantr 480 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝐴 = (Base‘𝑆))
118, 10eleqtrrd 2691 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → 𝑋𝐴)
121subrgring 18606 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
13 eqid 2610 . . . . . 6 (invr𝑆) = (invr𝑆)
143, 13, 6ringinvcl 18499 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑋𝑉) → ((invr𝑆)‘𝑋) ∈ (Base‘𝑆))
1512, 14sylan 487 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → ((invr𝑆)‘𝑋) ∈ (Base‘𝑆))
16 subrgunit.4 . . . . 5 𝐼 = (invr𝑅)
171, 16, 3, 13subrginv 18619 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝐼𝑋) = ((invr𝑆)‘𝑋))
1815, 17, 103eltr4d 2703 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝐴)
195, 11, 183jca 1235 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝑉) → (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴))
20 simpr2 1061 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝐴)
219adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝐴 = (Base‘𝑆))
2220, 21eleqtrd 2690 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋 ∈ (Base‘𝑆))
23 simpr3 1062 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝐼𝑋) ∈ 𝐴)
2423, 21eleqtrd 2690 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝐼𝑋) ∈ (Base‘𝑆))
25 eqid 2610 . . . . . 6 (∥r𝑆) = (∥r𝑆)
26 eqid 2610 . . . . . 6 (.r𝑆) = (.r𝑆)
276, 25, 26dvdsrmul 18471 . . . . 5 ((𝑋 ∈ (Base‘𝑆) ∧ (𝐼𝑋) ∈ (Base‘𝑆)) → 𝑋(∥r𝑆)((𝐼𝑋)(.r𝑆)𝑋))
2822, 24, 27syl2anc 691 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r𝑆)((𝐼𝑋)(.r𝑆)𝑋))
29 subrgrcl 18608 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3029adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑅 ∈ Ring)
31 simpr1 1060 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝑈)
32 eqid 2610 . . . . . . 7 (.r𝑅) = (.r𝑅)
33 eqid 2610 . . . . . . 7 (1r𝑅) = (1r𝑅)
342, 16, 32, 33unitlinv 18500 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋)(.r𝑅)𝑋) = (1r𝑅))
3530, 31, 34syl2anc 691 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑅)𝑋) = (1r𝑅))
361, 32ressmulr 15829 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
3736adantr 480 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (.r𝑅) = (.r𝑆))
3837oveqd 6566 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑅)𝑋) = ((𝐼𝑋)(.r𝑆)𝑋))
391, 33subrg1 18613 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (1r𝑅) = (1r𝑆))
4039adantr 480 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (1r𝑅) = (1r𝑆))
4135, 38, 403eqtr3d 2652 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r𝑆)𝑋) = (1r𝑆))
4228, 41breqtrd 4609 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r𝑆)(1r𝑆))
43 eqid 2610 . . . . . . 7 (oppr𝑆) = (oppr𝑆)
4443, 6opprbas 18452 . . . . . 6 (Base‘𝑆) = (Base‘(oppr𝑆))
45 eqid 2610 . . . . . 6 (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆))
46 eqid 2610 . . . . . 6 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
4744, 45, 46dvdsrmul 18471 . . . . 5 ((𝑋 ∈ (Base‘𝑆) ∧ (𝐼𝑋) ∈ (Base‘𝑆)) → 𝑋(∥r‘(oppr𝑆))((𝐼𝑋)(.r‘(oppr𝑆))𝑋))
4822, 24, 47syl2anc 691 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr𝑆))((𝐼𝑋)(.r‘(oppr𝑆))𝑋))
496, 26, 43, 46opprmul 18449 . . . . 5 ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (𝑋(.r𝑆)(𝐼𝑋))
502, 16, 32, 33unitrinv 18501 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
5130, 31, 50syl2anc 691 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑅)(𝐼𝑋)) = (1r𝑅))
5237oveqd 6566 . . . . . 6 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑅)(𝐼𝑋)) = (𝑋(.r𝑆)(𝐼𝑋)))
5351, 52, 403eqtr3d 2652 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → (𝑋(.r𝑆)(𝐼𝑋)) = (1r𝑆))
5449, 53syl5eq 2656 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → ((𝐼𝑋)(.r‘(oppr𝑆))𝑋) = (1r𝑆))
5548, 54breqtrd 4609 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋(∥r‘(oppr𝑆))(1r𝑆))
56 eqid 2610 . . . 4 (1r𝑆) = (1r𝑆)
573, 56, 25, 43, 45isunit 18480 . . 3 (𝑋𝑉 ↔ (𝑋(∥r𝑆)(1r𝑆) ∧ 𝑋(∥r‘(oppr𝑆))(1r𝑆)))
5842, 55, 57sylanbrc 695 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)) → 𝑋𝑉)
5919, 58impbida 873 1 (𝐴 ∈ (SubRing‘𝑅) → (𝑋𝑉 ↔ (𝑋𝑈𝑋𝐴 ∧ (𝐼𝑋) ∈ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  .rcmulr 15769  1rcur 18324  Ringcrg 18370  opprcoppr 18445  rcdsr 18461  Unitcui 18462  invrcinvr 18494  SubRingcsubrg 18599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-subrg 18601
This theorem is referenced by:  issubdrg  18628  gzrngunit  19631  zringunit  19655  cphreccllem  22786
  Copyright terms: Public domain W3C validator