MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgdv Structured version   Visualization version   GIF version

Theorem subrgdv 18620
Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdv.1 𝑆 = (𝑅s 𝐴)
subrgdv.2 / = (/r𝑅)
subrgdv.3 𝑈 = (Unit‘𝑆)
subrgdv.4 𝐸 = (/r𝑆)
Assertion
Ref Expression
subrgdv ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌))

Proof of Theorem subrgdv
StepHypRef Expression
1 subrgdv.1 . . . . . 6 𝑆 = (𝑅s 𝐴)
2 eqid 2610 . . . . . 6 (invr𝑅) = (invr𝑅)
3 subrgdv.3 . . . . . 6 𝑈 = (Unit‘𝑆)
4 eqid 2610 . . . . . 6 (invr𝑆) = (invr𝑆)
51, 2, 3, 4subrginv 18619 . . . . 5 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑌𝑈) → ((invr𝑅)‘𝑌) = ((invr𝑆)‘𝑌))
653adant2 1073 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → ((invr𝑅)‘𝑌) = ((invr𝑆)‘𝑌))
76oveq2d 6565 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑅)‘𝑌)) = (𝑋(.r𝑅)((invr𝑆)‘𝑌)))
8 eqid 2610 . . . . . 6 (.r𝑅) = (.r𝑅)
91, 8ressmulr 15829 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1093ad2ant1 1075 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (.r𝑅) = (.r𝑆))
1110oveqd 6566 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑆)‘𝑌)) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
127, 11eqtrd 2644 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋(.r𝑅)((invr𝑅)‘𝑌)) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
13 eqid 2610 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
1413subrgss 18604 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
15143ad2ant1 1075 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝐴 ⊆ (Base‘𝑅))
16 simp2 1055 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋𝐴)
1715, 16sseldd 3569 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
18 eqid 2610 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
191, 18, 3subrguss 18618 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑈 ⊆ (Unit‘𝑅))
20193ad2ant1 1075 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑈 ⊆ (Unit‘𝑅))
21 simp3 1056 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑌𝑈)
2220, 21sseldd 3569 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑌 ∈ (Unit‘𝑅))
23 subrgdv.2 . . . 4 / = (/r𝑅)
2413, 8, 18, 2, 23dvrval 18508 . . 3 ((𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Unit‘𝑅)) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
2517, 22, 24syl2anc 691 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋(.r𝑅)((invr𝑅)‘𝑌)))
261subrgbas 18612 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
27263ad2ant1 1075 . . . 4 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝐴 = (Base‘𝑆))
2816, 27eleqtrd 2690 . . 3 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → 𝑋 ∈ (Base‘𝑆))
29 eqid 2610 . . . 4 (Base‘𝑆) = (Base‘𝑆)
30 eqid 2610 . . . 4 (.r𝑆) = (.r𝑆)
31 subrgdv.4 . . . 4 𝐸 = (/r𝑆)
3229, 30, 3, 4, 31dvrval 18508 . . 3 ((𝑋 ∈ (Base‘𝑆) ∧ 𝑌𝑈) → (𝑋𝐸𝑌) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
3328, 21, 32syl2anc 691 . 2 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋𝐸𝑌) = (𝑋(.r𝑆)((invr𝑆)‘𝑌)))
3412, 25, 333eqtr4d 2654 1 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑋𝐴𝑌𝑈) → (𝑋 / 𝑌) = (𝑋𝐸𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  s cress 15696  .rcmulr 15769  Unitcui 18462  invrcinvr 18494  /rcdvr 18505  SubRingcsubrg 18599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-subrg 18601
This theorem is referenced by:  qsssubdrg  19624  redvr  19782  cvsdiv  22740  qrngdiv  25113
  Copyright terms: Public domain W3C validator