MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgcrng Structured version   Visualization version   GIF version

Theorem subrgcrng 18607
Description: A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypothesis
Ref Expression
subrgring.1 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subrgcrng ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing)

Proof of Theorem subrgcrng
StepHypRef Expression
1 subrgring.1 . . . 4 𝑆 = (𝑅s 𝐴)
21subrgring 18606 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
32adantl 481 . 2 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ Ring)
4 eqid 2610 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
51, 4mgpress 18323 . . 3 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) = (mulGrp‘𝑆))
64crngmgp 18378 . . . . 5 (𝑅 ∈ CRing → (mulGrp‘𝑅) ∈ CMnd)
76adantr 480 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑅) ∈ CMnd)
8 eqid 2610 . . . . . . 7 (mulGrp‘𝑆) = (mulGrp‘𝑆)
98ringmgp 18376 . . . . . 6 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
103, 9syl 17 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑆) ∈ Mnd)
115, 10eqeltrd 2688 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) ∈ Mnd)
12 eqid 2610 . . . . 5 ((mulGrp‘𝑅) ↾s 𝐴) = ((mulGrp‘𝑅) ↾s 𝐴)
1312subcmn 18065 . . . 4 (((mulGrp‘𝑅) ∈ CMnd ∧ ((mulGrp‘𝑅) ↾s 𝐴) ∈ Mnd) → ((mulGrp‘𝑅) ↾s 𝐴) ∈ CMnd)
147, 11, 13syl2anc 691 . . 3 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → ((mulGrp‘𝑅) ↾s 𝐴) ∈ CMnd)
155, 14eqeltrrd 2689 . 2 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → (mulGrp‘𝑆) ∈ CMnd)
168iscrng 18377 . 2 (𝑆 ∈ CRing ↔ (𝑆 ∈ Ring ∧ (mulGrp‘𝑆) ∈ CMnd))
173, 15, 16sylanbrc 695 1 ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  s cress 15696  Mndcmnd 17117  CMndccmn 18016  mulGrpcmgp 18312  Ringcrg 18370  CRingccrg 18371  SubRingcsubrg 18599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-cmn 18018  df-mgp 18313  df-ring 18372  df-cring 18373  df-subrg 18601
This theorem is referenced by:  sraassa  19146  mplcrng  19274  evlsval2  19341  mpfind  19357  ply1crng  19389  evls1gsummul  19511  zringcrng  19639  refld  19784  gzcrng  29170
  Copyright terms: Public domain W3C validator