MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submrc Structured version   Visualization version   GIF version

Theorem submrc 16111
Description: In a closure system which is cut off above some level, closures below that level act as normal. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
submrc.f 𝐹 = (mrCls‘𝐶)
submrc.g 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷))
Assertion
Ref Expression
submrc ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) = (𝐹𝑈))

Proof of Theorem submrc
StepHypRef Expression
1 submre 16088 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷))
213adant3 1074 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷))
3 simp1 1054 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝐶 ∈ (Moore‘𝑋))
4 submrc.f . . . 4 𝐹 = (mrCls‘𝐶)
5 simp3 1056 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈𝐷)
6 mress 16076 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶) → 𝐷𝑋)
763adant3 1074 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝐷𝑋)
85, 7sstrd 3578 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈𝑋)
93, 4, 8mrcssidd 16108 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈 ⊆ (𝐹𝑈))
104mrccl 16094 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) ∈ 𝐶)
113, 8, 10syl2anc 691 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ 𝐶)
124mrcsscl 16103 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐷𝐷𝐶) → (𝐹𝑈) ⊆ 𝐷)
13123com23 1263 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ⊆ 𝐷)
14 fvex 6113 . . . . . 6 (𝐹𝑈) ∈ V
1514elpw 4114 . . . . 5 ((𝐹𝑈) ∈ 𝒫 𝐷 ↔ (𝐹𝑈) ⊆ 𝐷)
1613, 15sylibr 223 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ 𝒫 𝐷)
1711, 16elind 3760 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
18 submrc.g . . . 4 𝐺 = (mrCls‘(𝐶 ∩ 𝒫 𝐷))
1918mrcsscl 16103 . . 3 (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈 ⊆ (𝐹𝑈) ∧ (𝐹𝑈) ∈ (𝐶 ∩ 𝒫 𝐷)) → (𝐺𝑈) ⊆ (𝐹𝑈))
202, 9, 17, 19syl3anc 1318 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ⊆ (𝐹𝑈))
212, 18, 5mrcssidd 16108 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → 𝑈 ⊆ (𝐺𝑈))
22 inss1 3795 . . . 4 (𝐶 ∩ 𝒫 𝐷) ⊆ 𝐶
2318mrccl 16094 . . . . 5 (((𝐶 ∩ 𝒫 𝐷) ∈ (Moore‘𝐷) ∧ 𝑈𝐷) → (𝐺𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
242, 5, 23syl2anc 691 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ∈ (𝐶 ∩ 𝒫 𝐷))
2522, 24sseldi 3566 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) ∈ 𝐶)
264mrcsscl 16103 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ (𝐺𝑈) ∧ (𝐺𝑈) ∈ 𝐶) → (𝐹𝑈) ⊆ (𝐺𝑈))
273, 21, 25, 26syl3anc 1318 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐹𝑈) ⊆ (𝐺𝑈))
2820, 27eqssd 3585 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐷𝐶𝑈𝐷) → (𝐺𝑈) = (𝐹𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  cin 3539  wss 3540  𝒫 cpw 4108  cfv 5804  Moorecmre 16065  mrClscmrc 16066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-mre 16069  df-mrc 16070
This theorem is referenced by:  evlseu  19337
  Copyright terms: Public domain W3C validator