Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submgmcl Structured version   Visualization version   GIF version

Theorem submgmcl 41584
Description: Submagmas are closed under the monoid operation. (Contributed by AV, 26-Feb-2020.)
Hypothesis
Ref Expression
submgmcl.p + = (+g𝑀)
Assertion
Ref Expression
submgmcl ((𝑆 ∈ (SubMgm‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)

Proof of Theorem submgmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submgmrcl 41572 . . . . . . 7 (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm)
2 eqid 2610 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
3 submgmcl.p . . . . . . . 8 + = (+g𝑀)
42, 3issubmgm 41579 . . . . . . 7 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
51, 4syl 17 . . . . . 6 (𝑆 ∈ (SubMgm‘𝑀) → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
65ibi 255 . . . . 5 (𝑆 ∈ (SubMgm‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
76simprd 478 . . . 4 (𝑆 ∈ (SubMgm‘𝑀) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
8 ovrspc2v 6571 . . . 4 (((𝑋𝑆𝑌𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
97, 8sylan2 490 . . 3 (((𝑋𝑆𝑌𝑆) ∧ 𝑆 ∈ (SubMgm‘𝑀)) → (𝑋 + 𝑌) ∈ 𝑆)
109ancoms 468 . 2 ((𝑆 ∈ (SubMgm‘𝑀) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋 + 𝑌) ∈ 𝑆)
11103impb 1252 1 ((𝑆 ∈ (SubMgm‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wss 3540  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Mgmcmgm 17063  SubMgmcsubmgm 41568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-submgm 41570
This theorem is referenced by:  resmgmhm  41588  mgmhmima  41592
  Copyright terms: Public domain W3C validator