MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submaeval Structured version   Visualization version   GIF version

Theorem submaeval 20207
Description: An entry of a submatrix of a square matrix. (Contributed by AV, 28-Dec-2018.)
Hypotheses
Ref Expression
submafval.a 𝐴 = (𝑁 Mat 𝑅)
submafval.q 𝑄 = (𝑁 subMat 𝑅)
submafval.b 𝐵 = (Base‘𝐴)
Assertion
Ref Expression
submaeval ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = (𝐼𝑀𝐽))

Proof of Theorem submaeval
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submafval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 submafval.q . . . . 5 𝑄 = (𝑁 subMat 𝑅)
3 submafval.b . . . . 5 𝐵 = (Base‘𝐴)
41, 2, 3submaval 20206 . . . 4 ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
543expb 1258 . . 3 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁)) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
653adant3 1074 . 2 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)))
7 simp3l 1082 . . 3 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → 𝐼 ∈ (𝑁 ∖ {𝐾}))
8 simpl3r 1110 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) ∧ 𝑖 = 𝐼) → 𝐽 ∈ (𝑁 ∖ {𝐿}))
9 ovex 6577 . . . 4 (𝑖𝑀𝑗) ∈ V
109a1i 11 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑖𝑀𝑗) ∈ V)
11 oveq12 6558 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽))
1211adantl 481 . . 3 (((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → (𝑖𝑀𝑗) = (𝐼𝑀𝐽))
137, 8, 10, 12ovmpt2dv2 6692 . 2 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → ((𝐾(𝑄𝑀)𝐿) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝑀𝑗)) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = (𝐼𝑀𝐽)))
146, 13mpd 15 1 ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼 ∈ (𝑁 ∖ {𝐾}) ∧ 𝐽 ∈ (𝑁 ∖ {𝐿}))) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = (𝐼𝑀𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  {csn 4125  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695   Mat cmat 20032   subMat csubma 20201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-fin 7845  df-slot 15699  df-base 15700  df-mat 20033  df-subma 20202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator