Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgpgp | Structured version Visualization version GIF version |
Description: A subgroup of a p-group is a p-group. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
subgpgp | ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgpprm 17831 | . . 3 ⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 ∈ ℙ) |
3 | eqid 2610 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
4 | 3 | subggrp 17420 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ↾s 𝑆) ∈ Grp) |
6 | eqid 2610 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | eqid 2610 | . . . . . . 7 ⊢ (od‘𝐺) = (od‘𝐺) | |
8 | 6, 7 | ispgp 17830 | . . . . . 6 ⊢ (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ 𝐺 ∈ Grp ∧ ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
9 | 8 | simp3bi 1071 | . . . . 5 ⊢ (𝑃 pGrp 𝐺 → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛)) |
11 | 6 | subgss 17418 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (Base‘𝐺)) |
13 | ssralv 3629 | . . . . . 6 ⊢ (𝑆 ⊆ (Base‘𝐺) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛))) |
15 | eqid 2610 | . . . . . . . . . 10 ⊢ (od‘(𝐺 ↾s 𝑆)) = (od‘(𝐺 ↾s 𝑆)) | |
16 | 3, 7, 15 | subgod 17808 | . . . . . . . . 9 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺 ↾s 𝑆))‘𝑥)) |
17 | 16 | adantll 746 | . . . . . . . 8 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → ((od‘𝐺)‘𝑥) = ((od‘(𝐺 ↾s 𝑆))‘𝑥)) |
18 | 17 | eqeq1d 2612 | . . . . . . 7 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → (((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
19 | 18 | rexbidv 3034 | . . . . . 6 ⊢ (((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆) → (∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
20 | 19 | ralbidva 2968 | . . . . 5 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) ↔ ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
21 | 14, 20 | sylibd 228 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ (Base‘𝐺)∃𝑛 ∈ ℕ0 ((od‘𝐺)‘𝑥) = (𝑃↑𝑛) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
22 | 10, 21 | mpd 15 | . . 3 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛)) |
23 | 3 | subgbas 17421 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
24 | 23 | adantl 481 | . . . 4 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
25 | 24 | raleqdv 3121 | . . 3 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (∀𝑥 ∈ 𝑆 ∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛) ↔ ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
26 | 22, 25 | mpbid 221 | . 2 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛)) |
27 | eqid 2610 | . . 3 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
28 | 27, 15 | ispgp 17830 | . 2 ⊢ (𝑃 pGrp (𝐺 ↾s 𝑆) ↔ (𝑃 ∈ ℙ ∧ (𝐺 ↾s 𝑆) ∈ Grp ∧ ∀𝑥 ∈ (Base‘(𝐺 ↾s 𝑆))∃𝑛 ∈ ℕ0 ((od‘(𝐺 ↾s 𝑆))‘𝑥) = (𝑃↑𝑛))) |
29 | 2, 5, 26, 28 | syl3anbrc 1239 | 1 ⊢ ((𝑃 pGrp 𝐺 ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺 ↾s 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 ⊆ wss 3540 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℕ0cn0 11169 ↑cexp 12722 ℙcprime 15223 Basecbs 15695 ↾s cress 15696 Grpcgrp 17245 SubGrpcsubg 17411 odcod 17767 pGrp cpgp 17769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-seq 12664 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-grp 17248 df-minusg 17249 df-mulg 17364 df-subg 17414 df-od 17771 df-pgp 17773 |
This theorem is referenced by: pgpfaclem1 18303 pgpfaclem3 18305 |
Copyright terms: Public domain | W3C validator |