MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcidcl Structured version   Visualization version   GIF version

Theorem subcidcl 16327
Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcidcl.j (𝜑𝐽 ∈ (Subcat‘𝐶))
subcidcl.2 (𝜑𝐽 Fn (𝑆 × 𝑆))
subcidcl.x (𝜑𝑋𝑆)
subcidcl.1 1 = (Id‘𝐶)
Assertion
Ref Expression
subcidcl (𝜑 → ( 1𝑋) ∈ (𝑋𝐽𝑋))

Proof of Theorem subcidcl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subcidcl.x . 2 (𝜑𝑋𝑆)
2 subcidcl.j . . . . 5 (𝜑𝐽 ∈ (Subcat‘𝐶))
3 eqid 2610 . . . . . 6 (Homf𝐶) = (Homf𝐶)
4 subcidcl.1 . . . . . 6 1 = (Id‘𝐶)
5 eqid 2610 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
6 subcrcl 16299 . . . . . . 7 (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat)
72, 6syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
8 subcidcl.2 . . . . . 6 (𝜑𝐽 Fn (𝑆 × 𝑆))
93, 4, 5, 7, 8issubc2 16319 . . . . 5 (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
102, 9mpbid 221 . . . 4 (𝜑 → (𝐽cat (Homf𝐶) ∧ ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))
1110simprd 478 . . 3 (𝜑 → ∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
12 simpl 472 . . . 4 ((( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ( 1𝑥) ∈ (𝑥𝐽𝑥))
1312ralimi 2936 . . 3 (∀𝑥𝑆 (( 1𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝑆𝑧𝑆𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
1411, 13syl 17 . 2 (𝜑 → ∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥))
15 fveq2 6103 . . . 4 (𝑥 = 𝑋 → ( 1𝑥) = ( 1𝑋))
16 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
1716, 16oveq12d 6567 . . . 4 (𝑥 = 𝑋 → (𝑥𝐽𝑥) = (𝑋𝐽𝑋))
1815, 17eleq12d 2682 . . 3 (𝑥 = 𝑋 → (( 1𝑥) ∈ (𝑥𝐽𝑥) ↔ ( 1𝑋) ∈ (𝑋𝐽𝑋)))
1918rspcv 3278 . 2 (𝑋𝑆 → (∀𝑥𝑆 ( 1𝑥) ∈ (𝑥𝐽𝑥) → ( 1𝑋) ∈ (𝑋𝐽𝑋)))
201, 14, 19sylc 63 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝐽𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  cop 4131   class class class wbr 4583   × cxp 5036   Fn wfn 5799  cfv 5804  (class class class)co 6549  compcco 15780  Catccat 16148  Idccid 16149  Homf chomf 16150  cat cssc 16290  Subcatcsubc 16292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-pm 7747  df-ixp 7795  df-ssc 16293  df-subc 16295
This theorem is referenced by:  subccatid  16329  issubc3  16332  funcres  16379
  Copyright terms: Public domain W3C validator