Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subcidcl | Structured version Visualization version GIF version |
Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
subcidcl.j | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subcidcl.2 | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
subcidcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
subcidcl.1 | ⊢ 1 = (Id‘𝐶) |
Ref | Expression |
---|---|
subcidcl | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcidcl.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
2 | subcidcl.j | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
3 | eqid 2610 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
4 | subcidcl.1 | . . . . . 6 ⊢ 1 = (Id‘𝐶) | |
5 | eqid 2610 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
6 | subcrcl 16299 | . . . . . . 7 ⊢ (𝐽 ∈ (Subcat‘𝐶) → 𝐶 ∈ Cat) | |
7 | 2, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | subcidcl.2 | . . . . . 6 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
9 | 3, 4, 5, 7, 8 | issubc2 16319 | . . . . 5 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
10 | 2, 9 | mpbid 221 | . . . 4 ⊢ (𝜑 → (𝐽 ⊆cat (Homf ‘𝐶) ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)))) |
11 | 10 | simprd 478 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧))) |
12 | simpl 472 | . . . 4 ⊢ ((( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) | |
13 | 12 | ralimi 2936 | . . 3 ⊢ (∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝐶)𝑧)𝑓) ∈ (𝑥𝐽𝑧)) → ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
14 | 11, 13 | syl 17 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥)) |
15 | fveq2 6103 | . . . 4 ⊢ (𝑥 = 𝑋 → ( 1 ‘𝑥) = ( 1 ‘𝑋)) | |
16 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
17 | 16, 16 | oveq12d 6567 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐽𝑥) = (𝑋𝐽𝑋)) |
18 | 15, 17 | eleq12d 2682 | . . 3 ⊢ (𝑥 = 𝑋 → (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ↔ ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋))) |
19 | 18 | rspcv 3278 | . 2 ⊢ (𝑋 ∈ 𝑆 → (∀𝑥 ∈ 𝑆 ( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) → ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋))) |
20 | 1, 14, 19 | sylc 63 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐽𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 〈cop 4131 class class class wbr 4583 × cxp 5036 Fn wfn 5799 ‘cfv 5804 (class class class)co 6549 compcco 15780 Catccat 16148 Idccid 16149 Homf chomf 16150 ⊆cat cssc 16290 Subcatcsubc 16292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-pm 7747 df-ixp 7795 df-ssc 16293 df-subc 16295 |
This theorem is referenced by: subccatid 16329 issubc3 16332 funcres 16379 |
Copyright terms: Public domain | W3C validator |