Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem50 Structured version   Visualization version   GIF version

Theorem stoweidlem50 38943
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem50.1 𝑡𝑈
stoweidlem50.2 𝑡𝜑
stoweidlem50.3 𝐾 = (topGen‘ran (,))
stoweidlem50.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem50.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem50.6 𝑇 = 𝐽
stoweidlem50.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem50.8 (𝜑𝐽 ∈ Comp)
stoweidlem50.9 (𝜑𝐴𝐶)
stoweidlem50.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem50.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem50.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem50.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem50.14 (𝜑𝑈𝐽)
stoweidlem50.15 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem50 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
Distinct variable groups:   𝑢,𝐽   𝑢,𝑇   𝑢,𝑈   𝑢,𝑊   𝑓,𝑔,,𝑡,𝑇   𝑓,𝑞,𝑔,𝑡,𝑇   𝑓,𝑟,𝐴,𝑞,𝑡   𝑥,𝑓,𝑞,𝑡,𝑇   𝑄,𝑓,𝑔   𝑈,𝑓,𝑔,𝑞   𝑓,𝑍,𝑔,,𝑡   𝜑,𝑓,𝑔,𝑞   𝑤,𝑔,,𝑡,𝑇   𝐴,𝑔,   𝑔,𝑊   𝑍,𝑞,𝑥   𝑇,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐽,𝑤   𝑡,𝐾   𝜑,𝑢   𝑤,𝑄   𝑥,𝐴   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑡,)   𝐴(𝑤,𝑢)   𝐶(𝑥,𝑤,𝑢,𝑡,𝑓,𝑔,,𝑟,𝑞)   𝑄(𝑥,𝑢,𝑡,,𝑟,𝑞)   𝑈(𝑤,𝑡,)   𝐽(𝑥,𝑓,𝑔,,𝑟,𝑞)   𝐾(𝑥,𝑤,𝑢,𝑓,𝑔,,𝑟,𝑞)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞)   𝑍(𝑤,𝑢,𝑟)

Proof of Theorem stoweidlem50
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem50.1 . . 3 𝑡𝑈
2 stoweidlem50.4 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
3 nfrab1 3099 . . . 4 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
42, 3nfcxfr 2749 . . 3 𝑄
5 nfv 1830 . . 3 𝑞𝜑
6 stoweidlem50.2 . . 3 𝑡𝜑
7 stoweidlem50.3 . . 3 𝐾 = (topGen‘ran (,))
8 stoweidlem50.5 . . 3 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9 stoweidlem50.6 . . 3 𝑇 = 𝐽
10 stoweidlem50.8 . . 3 (𝜑𝐽 ∈ Comp)
11 stoweidlem50.9 . . . 4 (𝜑𝐴𝐶)
12 stoweidlem50.7 . . . 4 𝐶 = (𝐽 Cn 𝐾)
1311, 12syl6sseq 3614 . . 3 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
14 stoweidlem50.10 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem50.11 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
16 stoweidlem50.12 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
17 stoweidlem50.13 . . 3 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
18 stoweidlem50.14 . . 3 (𝜑𝑈𝐽)
19 stoweidlem50.15 . . 3 (𝜑𝑍𝑈)
20 uniexg 6853 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ V)
2110, 20syl 17 . . . 4 (𝜑 𝐽 ∈ V)
229, 21syl5eqel 2692 . . 3 (𝜑𝑇 ∈ V)
231, 4, 5, 6, 7, 2, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22stoweidlem46 38939 . 2 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
24 dfin4 3826 . . . . . . . . . . 11 (𝑇𝑈) = (𝑇 ∖ (𝑇𝑈))
25 elssuni 4403 . . . . . . . . . . . . . 14 (𝑈𝐽𝑈 𝐽)
2618, 25syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 𝐽)
2726, 9syl6sseqr 3615 . . . . . . . . . . . 12 (𝜑𝑈𝑇)
28 sseqin2 3779 . . . . . . . . . . . 12 (𝑈𝑇 ↔ (𝑇𝑈) = 𝑈)
2927, 28sylib 207 . . . . . . . . . . 11 (𝜑 → (𝑇𝑈) = 𝑈)
3024, 29syl5eqr 2658 . . . . . . . . . 10 (𝜑 → (𝑇 ∖ (𝑇𝑈)) = 𝑈)
3130, 18eqeltrd 2688 . . . . . . . . 9 (𝜑 → (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽)
32 cmptop 21008 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ Top)
3310, 32syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
34 difssd 3700 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
359iscld2 20642 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝑇𝑈) ∈ (Clsd‘𝐽) ↔ (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽))
3633, 34, 35syl2anc 691 . . . . . . . . 9 (𝜑 → ((𝑇𝑈) ∈ (Clsd‘𝐽) ↔ (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽))
3731, 36mpbird 246 . . . . . . . 8 (𝜑 → (𝑇𝑈) ∈ (Clsd‘𝐽))
38 cmpcld 21015 . . . . . . . 8 ((𝐽 ∈ Comp ∧ (𝑇𝑈) ∈ (Clsd‘𝐽)) → (𝐽t (𝑇𝑈)) ∈ Comp)
3910, 37, 38syl2anc 691 . . . . . . 7 (𝜑 → (𝐽t (𝑇𝑈)) ∈ Comp)
409cmpsub 21013 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝐽t (𝑇𝑈)) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
4133, 34, 40syl2anc 691 . . . . . . 7 (𝜑 → ((𝐽t (𝑇𝑈)) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
4239, 41mpbid 221 . . . . . 6 (𝜑 → ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
43 ssrab2 3650 . . . . . . . 8 {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ⊆ 𝐽
448, 43eqsstri 3598 . . . . . . 7 𝑊𝐽
458, 10rabexd 4741 . . . . . . . 8 (𝜑𝑊 ∈ V)
46 elpwg 4116 . . . . . . . 8 (𝑊 ∈ V → (𝑊 ∈ 𝒫 𝐽𝑊𝐽))
4745, 46syl 17 . . . . . . 7 (𝜑 → (𝑊 ∈ 𝒫 𝐽𝑊𝐽))
4844, 47mpbiri 247 . . . . . 6 (𝜑𝑊 ∈ 𝒫 𝐽)
49 unieq 4380 . . . . . . . . 9 (𝑐 = 𝑊 𝑐 = 𝑊)
5049sseq2d 3596 . . . . . . . 8 (𝑐 = 𝑊 → ((𝑇𝑈) ⊆ 𝑐 ↔ (𝑇𝑈) ⊆ 𝑊))
51 pweq 4111 . . . . . . . . . 10 (𝑐 = 𝑊 → 𝒫 𝑐 = 𝒫 𝑊)
5251ineq1d 3775 . . . . . . . . 9 (𝑐 = 𝑊 → (𝒫 𝑐 ∩ Fin) = (𝒫 𝑊 ∩ Fin))
5352rexeqdv 3122 . . . . . . . 8 (𝑐 = 𝑊 → (∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢 ↔ ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5450, 53imbi12d 333 . . . . . . 7 (𝑐 = 𝑊 → (((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢) ↔ ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
5554rspccva 3281 . . . . . 6 ((∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢) ∧ 𝑊 ∈ 𝒫 𝐽) → ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5642, 48, 55syl2anc 691 . . . . 5 (𝜑 → ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5756imp 444 . . . 4 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)
58 df-rex 2902 . . . 4 (∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢 ↔ ∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢))
5957, 58sylib 207 . . 3 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢))
60 elinel2 3762 . . . . . . 7 (𝑢 ∈ (𝒫 𝑊 ∩ Fin) → 𝑢 ∈ Fin)
6160ad2antrl 760 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ Fin)
62 elinel1 3761 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑊 ∩ Fin) → 𝑢 ∈ 𝒫 𝑊)
6362ad2antrl 760 . . . . . . 7 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ 𝒫 𝑊)
6463elpwid 4118 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢𝑊)
65 simprr 792 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ⊆ 𝑢)
6661, 64, 653jca 1235 . . . . 5 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
6766ex 449 . . . 4 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ((𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢) → (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)))
6867eximdv 1833 . . 3 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → (∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢) → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)))
6959, 68mpd 15 . 2 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
7023, 69mpdan 699 1 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wnf 1699  wcel 1977  wnfc 2738  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  cmpt 4643  ran crn 5039  cfv 5804  (class class class)co 6549  Fincfn 7841  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  (,)cioo 12046  t crest 15904  topGenctg 15921  Topctop 20517  Clsdccld 20630   Cn ccn 20838  Compccmp 20999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937
This theorem is referenced by:  stoweidlem53  38946
  Copyright terms: Public domain W3C validator