Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem22 Structured version   Visualization version   GIF version

Theorem stoweidlem22 38915
Description: If a set of real functions from a common domain is closed under addition, multiplication and it contains constants, then it is closed under subtraction. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem22.8 𝑡𝜑
stoweidlem22.9 𝑡𝐹
stoweidlem22.10 𝑡𝐺
stoweidlem22.1 𝐻 = (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡)))
stoweidlem22.2 𝐼 = (𝑡𝑇 ↦ -1)
stoweidlem22.3 𝐿 = (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
stoweidlem22.4 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
stoweidlem22.5 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem22.6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem22.7 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
Assertion
Ref Expression
stoweidlem22 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) ∈ 𝐴)
Distinct variable groups:   𝑓,𝑔,𝑡,𝐴   𝑓,𝐹,𝑔   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑇,𝑓,𝑔,𝑡   𝜑,𝑓,𝑔   𝑔,𝐿   𝑥,𝑡,𝐴   𝑥,𝑇   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑡)   𝐹(𝑥,𝑡)   𝐺(𝑥,𝑡)   𝐻(𝑥,𝑡,𝑓,𝑔)   𝐼(𝑥,𝑡)   𝐿(𝑥,𝑡,𝑓)

Proof of Theorem stoweidlem22
StepHypRef Expression
1 stoweidlem22.8 . . . 4 𝑡𝜑
2 stoweidlem22.9 . . . . 5 𝑡𝐹
32nfel1 2765 . . . 4 𝑡 𝐹𝐴
4 stoweidlem22.10 . . . . 5 𝑡𝐺
54nfel1 2765 . . . 4 𝑡 𝐺𝐴
61, 3, 5nf3an 1819 . . 3 𝑡(𝜑𝐹𝐴𝐺𝐴)
7 simpr 476 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝑡𝑇)
8 simpl1 1057 . . . . . . . . . 10 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝜑)
9 stoweidlem22.2 . . . . . . . . . . . 12 𝐼 = (𝑡𝑇 ↦ -1)
10 neg1rr 11002 . . . . . . . . . . . . 13 -1 ∈ ℝ
11 stoweidlem22.7 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
1211stoweidlem4 38897 . . . . . . . . . . . . 13 ((𝜑 ∧ -1 ∈ ℝ) → (𝑡𝑇 ↦ -1) ∈ 𝐴)
1310, 12mpan2 703 . . . . . . . . . . . 12 (𝜑 → (𝑡𝑇 ↦ -1) ∈ 𝐴)
149, 13syl5eqel 2692 . . . . . . . . . . 11 (𝜑𝐼𝐴)
15 eleq1 2676 . . . . . . . . . . . . . . 15 (𝑓 = 𝐼 → (𝑓𝐴𝐼𝐴))
1615anbi2d 736 . . . . . . . . . . . . . 14 (𝑓 = 𝐼 → ((𝜑𝑓𝐴) ↔ (𝜑𝐼𝐴)))
17 feq1 5939 . . . . . . . . . . . . . 14 (𝑓 = 𝐼 → (𝑓:𝑇⟶ℝ ↔ 𝐼:𝑇⟶ℝ))
1816, 17imbi12d 333 . . . . . . . . . . . . 13 (𝑓 = 𝐼 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ)))
19 stoweidlem22.4 . . . . . . . . . . . . 13 ((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ)
2018, 19vtoclg 3239 . . . . . . . . . . . 12 (𝐼𝐴 → ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ))
2120anabsi7 856 . . . . . . . . . . 11 ((𝜑𝐼𝐴) → 𝐼:𝑇⟶ℝ)
2214, 21mpdan 699 . . . . . . . . . 10 (𝜑𝐼:𝑇⟶ℝ)
238, 22syl 17 . . . . . . . . 9 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐼:𝑇⟶ℝ)
2423, 7ffvelrnd 6268 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐼𝑡) ∈ ℝ)
25 simpl3 1059 . . . . . . . . 9 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐺𝐴)
26 eleq1 2676 . . . . . . . . . . . . . . 15 (𝑓 = 𝐺 → (𝑓𝐴𝐺𝐴))
2726anbi2d 736 . . . . . . . . . . . . . 14 (𝑓 = 𝐺 → ((𝜑𝑓𝐴) ↔ (𝜑𝐺𝐴)))
28 feq1 5939 . . . . . . . . . . . . . 14 (𝑓 = 𝐺 → (𝑓:𝑇⟶ℝ ↔ 𝐺:𝑇⟶ℝ))
2927, 28imbi12d 333 . . . . . . . . . . . . 13 (𝑓 = 𝐺 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ)))
3029, 19vtoclg 3239 . . . . . . . . . . . 12 (𝐺𝐴 → ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ))
3130anabsi7 856 . . . . . . . . . . 11 ((𝜑𝐺𝐴) → 𝐺:𝑇⟶ℝ)
32313adant3 1074 . . . . . . . . . 10 ((𝜑𝐺𝐴𝑡𝑇) → 𝐺:𝑇⟶ℝ)
33 simp3 1056 . . . . . . . . . 10 ((𝜑𝐺𝐴𝑡𝑇) → 𝑡𝑇)
3432, 33ffvelrnd 6268 . . . . . . . . 9 ((𝜑𝐺𝐴𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
358, 25, 7, 34syl3anc 1318 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐺𝑡) ∈ ℝ)
3624, 35remulcld 9949 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐼𝑡) · (𝐺𝑡)) ∈ ℝ)
37 stoweidlem22.3 . . . . . . . 8 𝐿 = (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
3837fvmpt2 6200 . . . . . . 7 ((𝑡𝑇 ∧ ((𝐼𝑡) · (𝐺𝑡)) ∈ ℝ) → (𝐿𝑡) = ((𝐼𝑡) · (𝐺𝑡)))
397, 36, 38syl2anc 691 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐿𝑡) = ((𝐼𝑡) · (𝐺𝑡)))
409fvmpt2 6200 . . . . . . . . 9 ((𝑡𝑇 ∧ -1 ∈ ℝ) → (𝐼𝑡) = -1)
4110, 40mpan2 703 . . . . . . . 8 (𝑡𝑇 → (𝐼𝑡) = -1)
4241adantl 481 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐼𝑡) = -1)
4342oveq1d 6564 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐼𝑡) · (𝐺𝑡)) = (-1 · (𝐺𝑡)))
4435recnd 9947 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐺𝑡) ∈ ℂ)
4544mulm1d 10361 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (-1 · (𝐺𝑡)) = -(𝐺𝑡))
4639, 43, 453eqtrd 2648 . . . . 5 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐿𝑡) = -(𝐺𝑡))
4746oveq2d 6565 . . . 4 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) + (𝐿𝑡)) = ((𝐹𝑡) + -(𝐺𝑡)))
48 simpl2 1058 . . . . . . . 8 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐹𝐴)
49 eleq1 2676 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓𝐴𝐹𝐴))
5049anbi2d 736 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝜑𝑓𝐴) ↔ (𝜑𝐹𝐴)))
51 feq1 5939 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝑓:𝑇⟶ℝ ↔ 𝐹:𝑇⟶ℝ))
5250, 51imbi12d 333 . . . . . . . . . 10 (𝑓 = 𝐹 → (((𝜑𝑓𝐴) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)))
5352, 19vtoclg 3239 . . . . . . . . 9 (𝐹𝐴 → ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ))
5453anabsi7 856 . . . . . . . 8 ((𝜑𝐹𝐴) → 𝐹:𝑇⟶ℝ)
558, 48, 54syl2anc 691 . . . . . . 7 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → 𝐹:𝑇⟶ℝ)
5655, 7ffvelrnd 6268 . . . . . 6 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
5756recnd 9947 . . . . 5 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℂ)
5857, 44negsubd 10277 . . . 4 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) + -(𝐺𝑡)) = ((𝐹𝑡) − (𝐺𝑡)))
5947, 58eqtr2d 2645 . . 3 (((𝜑𝐹𝐴𝐺𝐴) ∧ 𝑡𝑇) → ((𝐹𝑡) − (𝐺𝑡)) = ((𝐹𝑡) + (𝐿𝑡)))
606, 59mpteq2da 4671 . 2 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) = (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))))
61143ad2ant1 1075 . . . . 5 ((𝜑𝐹𝐴𝐺𝐴) → 𝐼𝐴)
62 nfmpt1 4675 . . . . . . . 8 𝑡(𝑡𝑇 ↦ -1)
639, 62nfcxfr 2749 . . . . . . 7 𝑡𝐼
6463nfeq2 2766 . . . . . 6 𝑡 𝑓 = 𝐼
654nfeq2 2766 . . . . . 6 𝑡 𝑔 = 𝐺
66 stoweidlem22.6 . . . . . 6 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
6764, 65, 66stoweidlem6 38899 . . . . 5 ((𝜑𝐼𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡))) ∈ 𝐴)
6861, 67syld3an2 1365 . . . 4 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡))) ∈ 𝐴)
6937, 68syl5eqel 2692 . . 3 ((𝜑𝐹𝐴𝐺𝐴) → 𝐿𝐴)
70 stoweidlem22.5 . . . 4 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
71 nfmpt1 4675 . . . . 5 𝑡(𝑡𝑇 ↦ ((𝐼𝑡) · (𝐺𝑡)))
7237, 71nfcxfr 2749 . . . 4 𝑡𝐿
7370, 2, 72stoweidlem8 38901 . . 3 ((𝜑𝐹𝐴𝐿𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))) ∈ 𝐴)
7469, 73syld3an3 1363 . 2 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) + (𝐿𝑡))) ∈ 𝐴)
7560, 74eqeltrd 2688 1 ((𝜑𝐹𝐴𝐺𝐴) → (𝑡𝑇 ↦ ((𝐹𝑡) − (𝐺𝑡))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wnf 1699  wcel 1977  wnfc 2738  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-neg 10148
This theorem is referenced by:  stoweidlem33  38926
  Copyright terms: Public domain W3C validator