Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > stle0i | Structured version Visualization version GIF version |
Description: If a state is less than or equal to 0, it is 0. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sto1.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
stle0i | ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 ↔ (𝑆‘𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sto1.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
2 | stge0 28467 | . . . . . 6 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → 0 ≤ (𝑆‘𝐴))) | |
3 | 1, 2 | mpi 20 | . . . . 5 ⊢ (𝑆 ∈ States → 0 ≤ (𝑆‘𝐴)) |
4 | 3 | anim2i 591 | . . . 4 ⊢ (((𝑆‘𝐴) ≤ 0 ∧ 𝑆 ∈ States) → ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴))) |
5 | 4 | expcom 450 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 → ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) |
6 | stcl 28459 | . . . . 5 ⊢ (𝑆 ∈ States → (𝐴 ∈ Cℋ → (𝑆‘𝐴) ∈ ℝ)) | |
7 | 1, 6 | mpi 20 | . . . 4 ⊢ (𝑆 ∈ States → (𝑆‘𝐴) ∈ ℝ) |
8 | 0re 9919 | . . . 4 ⊢ 0 ∈ ℝ | |
9 | letri3 10002 | . . . 4 ⊢ (((𝑆‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑆‘𝐴) = 0 ↔ ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) | |
10 | 7, 8, 9 | sylancl 693 | . . 3 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) = 0 ↔ ((𝑆‘𝐴) ≤ 0 ∧ 0 ≤ (𝑆‘𝐴)))) |
11 | 5, 10 | sylibrd 248 | . 2 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 → (𝑆‘𝐴) = 0)) |
12 | 0le0 10987 | . . 3 ⊢ 0 ≤ 0 | |
13 | breq1 4586 | . . 3 ⊢ ((𝑆‘𝐴) = 0 → ((𝑆‘𝐴) ≤ 0 ↔ 0 ≤ 0)) | |
14 | 12, 13 | mpbiri 247 | . 2 ⊢ ((𝑆‘𝐴) = 0 → (𝑆‘𝐴) ≤ 0) |
15 | 11, 14 | impbid1 214 | 1 ⊢ (𝑆 ∈ States → ((𝑆‘𝐴) ≤ 0 ↔ (𝑆‘𝐴) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 ℝcr 9814 0cc0 9815 ≤ cle 9954 Cℋ cch 27170 Statescst 27203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-i2m1 9883 ax-1ne0 9884 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-hilex 27240 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-icc 12053 df-sh 27448 df-ch 27462 df-st 28454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |