Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdbdmetval Structured version   Visualization version   GIF version

Theorem stdbdmetval 22129
 Description: Value of the standard bounded metric. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
stdbdmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
Assertion
Ref Expression
stdbdmetval ((𝑅𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem stdbdmetval
StepHypRef Expression
1 ovex 6577 . . . 4 (𝐴𝐶𝐵) ∈ V
2 ifexg 4107 . . . 4 (((𝐴𝐶𝐵) ∈ V ∧ 𝑅𝑉) → if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V)
31, 2mpan 702 . . 3 (𝑅𝑉 → if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V)
4 oveq12 6558 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝐶𝑦) = (𝐴𝐶𝐵))
54breq1d 4593 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝐶𝑦) ≤ 𝑅 ↔ (𝐴𝐶𝐵) ≤ 𝑅))
65, 4ifbieq1d 4059 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
7 stdbdmet.1 . . . 4 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if((𝑥𝐶𝑦) ≤ 𝑅, (𝑥𝐶𝑦), 𝑅))
86, 7ovmpt2ga 6688 . . 3 ((𝐴𝑋𝐵𝑋 ∧ if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅) ∈ V) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
93, 8syl3an3 1353 . 2 ((𝐴𝑋𝐵𝑋𝑅𝑉) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
1093comr 1265 1 ((𝑅𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = if((𝐴𝐶𝐵) ≤ 𝑅, (𝐴𝐶𝐵), 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ifcif 4036   class class class wbr 4583  (class class class)co 6549   ↦ cmpt2 6551   ≤ cle 9954 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554 This theorem is referenced by:  stdbdbl  22132
 Copyright terms: Public domain W3C validator