Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  stcltr1i Structured version   Visualization version   GIF version

Theorem stcltr1i 28517
 Description: Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
stcltr1.1 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
stcltr1.2 𝐴C
stcltr1.3 𝐵C
Assertion
Ref Expression
stcltr1i (𝜑 → (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem stcltr1i
StepHypRef Expression
1 stcltr1.1 . 2 (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)))
2 stcltr1.2 . . . 4 𝐴C
3 stcltr1.3 . . . 4 𝐵C
4 fveq2 6103 . . . . . . . 8 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
54eqeq1d 2612 . . . . . . 7 (𝑥 = 𝐴 → ((𝑆𝑥) = 1 ↔ (𝑆𝐴) = 1))
65imbi1d 330 . . . . . 6 (𝑥 = 𝐴 → (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) ↔ ((𝑆𝐴) = 1 → (𝑆𝑦) = 1)))
7 sseq1 3589 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
86, 7imbi12d 333 . . . . 5 (𝑥 = 𝐴 → ((((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦) ↔ (((𝑆𝐴) = 1 → (𝑆𝑦) = 1) → 𝐴𝑦)))
9 fveq2 6103 . . . . . . . 8 (𝑦 = 𝐵 → (𝑆𝑦) = (𝑆𝐵))
109eqeq1d 2612 . . . . . . 7 (𝑦 = 𝐵 → ((𝑆𝑦) = 1 ↔ (𝑆𝐵) = 1))
1110imbi2d 329 . . . . . 6 (𝑦 = 𝐵 → (((𝑆𝐴) = 1 → (𝑆𝑦) = 1) ↔ ((𝑆𝐴) = 1 → (𝑆𝐵) = 1)))
12 sseq2 3590 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
1311, 12imbi12d 333 . . . . 5 (𝑦 = 𝐵 → ((((𝑆𝐴) = 1 → (𝑆𝑦) = 1) → 𝐴𝑦) ↔ (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵)))
148, 13rspc2v 3293 . . . 4 ((𝐴C𝐵C ) → (∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦) → (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵)))
152, 3, 14mp2an 704 . . 3 (∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦) → (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵))
1615adantl 481 . 2 ((𝑆 ∈ States ∧ ∀𝑥C𝑦C (((𝑆𝑥) = 1 → (𝑆𝑦) = 1) → 𝑥𝑦)) → (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵))
171, 16sylbi 206 1 (𝜑 → (((𝑆𝐴) = 1 → (𝑆𝐵) = 1) → 𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  ‘cfv 5804  1c1 9816   Cℋ cch 27170  Statescst 27203 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812 This theorem is referenced by:  stcltr2i  28518  stcltrlem2  28520
 Copyright terms: Public domain W3C validator