Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > stafval | Structured version Visualization version GIF version |
Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
staffval.b | ⊢ 𝐵 = (Base‘𝑅) |
staffval.i | ⊢ ∗ = (*𝑟‘𝑅) |
staffval.f | ⊢ ∙ = (*rf‘𝑅) |
Ref | Expression |
---|---|
stafval | ⊢ (𝐴 ∈ 𝐵 → ( ∙ ‘𝐴) = ( ∗ ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . 2 ⊢ (𝑥 = 𝐴 → ( ∗ ‘𝑥) = ( ∗ ‘𝐴)) | |
2 | staffval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | staffval.i | . . 3 ⊢ ∗ = (*𝑟‘𝑅) | |
4 | staffval.f | . . 3 ⊢ ∙ = (*rf‘𝑅) | |
5 | 2, 3, 4 | staffval 18670 | . 2 ⊢ ∙ = (𝑥 ∈ 𝐵 ↦ ( ∗ ‘𝑥)) |
6 | fvex 6113 | . 2 ⊢ ( ∗ ‘𝐴) ∈ V | |
7 | 1, 5, 6 | fvmpt 6191 | 1 ⊢ (𝐴 ∈ 𝐵 → ( ∙ ‘𝐴) = ( ∗ ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ‘cfv 5804 Basecbs 15695 *𝑟cstv 15770 *rfcstf 18666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-staf 18668 |
This theorem is referenced by: srngcl 18678 srngnvl 18679 srngadd 18680 srngmul 18681 srng1 18682 srng0 18683 issrngd 18684 iporthcom 19799 |
Copyright terms: Public domain | W3C validator |