MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stafval Structured version   Visualization version   GIF version

Theorem stafval 18671
Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
staffval.b 𝐵 = (Base‘𝑅)
staffval.i = (*𝑟𝑅)
staffval.f = (*rf𝑅)
Assertion
Ref Expression
stafval (𝐴𝐵 → ( 𝐴) = ( 𝐴))

Proof of Theorem stafval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . 2 (𝑥 = 𝐴 → ( 𝑥) = ( 𝐴))
2 staffval.b . . 3 𝐵 = (Base‘𝑅)
3 staffval.i . . 3 = (*𝑟𝑅)
4 staffval.f . . 3 = (*rf𝑅)
52, 3, 4staffval 18670 . 2 = (𝑥𝐵 ↦ ( 𝑥))
6 fvex 6113 . 2 ( 𝐴) ∈ V
71, 5, 6fvmpt 6191 1 (𝐴𝐵 → ( 𝐴) = ( 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cfv 5804  Basecbs 15695  *𝑟cstv 15770  *rfcstf 18666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-staf 18668
This theorem is referenced by:  srngcl  18678  srngnvl  18679  srngadd  18680  srngmul  18681  srng1  18682  srng0  18683  issrngd  18684  iporthcom  19799
  Copyright terms: Public domain W3C validator