Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstotbnd3 Structured version   Visualization version   GIF version

Theorem sstotbnd3 32745
Description: Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypothesis
Ref Expression
sstotbnd.2 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
sstotbnd3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
Distinct variable groups:   𝑣,𝑑,𝑥,𝑀   𝑋,𝑑,𝑣,𝑥   𝑁,𝑑,𝑣,𝑥   𝑌,𝑑,𝑣,𝑥

Proof of Theorem sstotbnd3
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstotbnd.2 . . . 4 𝑁 = (𝑀 ↾ (𝑌 × 𝑌))
21sstotbnd2 32743 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)))
3 elin 3758 . . . . . . . . 9 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ∈ 𝒫 𝑋𝑣 ∈ Fin))
4 rabfi 8070 . . . . . . . . . 10 (𝑣 ∈ Fin → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)
54anim2i 591 . . . . . . . . 9 ((𝑣 ∈ 𝒫 𝑋𝑣 ∈ Fin) → (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
63, 5sylbi 206 . . . . . . . 8 (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
76anim2i 591 . . . . . . 7 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
87ancoms 468 . . . . . 6 ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)) → (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
9 an12 834 . . . . . 6 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ (𝑣 ∈ 𝒫 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) ↔ (𝑣 ∈ 𝒫 𝑋 ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
108, 9sylib 207 . . . . 5 ((𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑)) → (𝑣 ∈ 𝒫 𝑋 ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
1110reximi2 2993 . . . 4 (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
1211ralimi 2936 . . 3 (∀𝑑 ∈ ℝ+𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
132, 12syl6bi 242 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) → ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
14 ssrab2 3650 . . . . . . . . 9 {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑣
15 elpwi 4117 . . . . . . . . . 10 (𝑣 ∈ 𝒫 𝑋𝑣𝑋)
1615ad2antlr 759 . . . . . . . . 9 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → 𝑣𝑋)
1714, 16syl5ss 3579 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑋)
18 simprr 792 . . . . . . . 8 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)
19 elfpw 8151 . . . . . . . 8 ({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin) ↔ ({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ⊆ 𝑋 ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))
2017, 18, 19sylanbrc 695 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin))
21 ssel2 3563 . . . . . . . . . . . . 13 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → 𝑧 𝑥𝑣 (𝑥(ball‘𝑀)𝑑))
22 eliun 4460 . . . . . . . . . . . . 13 (𝑧 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))
2321, 22sylib 207 . . . . . . . . . . . 12 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))
24 inelcm 3984 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅)
2524expcom 450 . . . . . . . . . . . . . . 15 (𝑧𝑌 → (𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅))
2625ancrd 575 . . . . . . . . . . . . . 14 (𝑧𝑌 → (𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))))
2726reximdv 2999 . . . . . . . . . . . . 13 (𝑧𝑌 → (∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑))))
2827impcom 445 . . . . . . . . . . . 12 ((∃𝑥𝑣 𝑧 ∈ (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
2923, 28sylancom 698 . . . . . . . . . . 11 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
30 eliun 4460 . . . . . . . . . . . 12 (𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅}𝑧 ∈ (𝑦(ball‘𝑀)𝑑))
31 oveq1 6556 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑦(ball‘𝑀)𝑑) = (𝑥(ball‘𝑀)𝑑))
3231eleq2d 2673 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑧 ∈ (𝑦(ball‘𝑀)𝑑) ↔ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3332rexrab2 3341 . . . . . . . . . . . 12 (∃𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅}𝑧 ∈ (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3430, 33bitri 263 . . . . . . . . . . 11 (𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑) ↔ ∃𝑥𝑣 (((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅ ∧ 𝑧 ∈ (𝑥(ball‘𝑀)𝑑)))
3529, 34sylibr 223 . . . . . . . . . 10 ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ 𝑧𝑌) → 𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
3635ex 449 . . . . . . . . 9 (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → (𝑧𝑌𝑧 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)))
3736ssrdv 3574 . . . . . . . 8 (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) → 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
3837ad2antrl 760 . . . . . . 7 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
39 iuneq1 4470 . . . . . . . . 9 (𝑤 = {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} → 𝑦𝑤 (𝑦(ball‘𝑀)𝑑) = 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑))
4039sseq2d 3596 . . . . . . . 8 (𝑤 = {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} → (𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑) ↔ 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)))
4140rspcev 3282 . . . . . . 7 (({𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑌 𝑦 ∈ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} (𝑦(ball‘𝑀)𝑑)) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑))
4220, 38, 41syl2anc 691 . . . . . 6 ((((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) ∧ (𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑))
4342ex 449 . . . . 5 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) ∧ 𝑣 ∈ 𝒫 𝑋) → ((𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
4443rexlimdva 3013 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∃𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → ∃𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
4544ralimdv 2946 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → ∀𝑑 ∈ ℝ+𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
461sstotbnd2 32743 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑤 ∈ (𝒫 𝑋 ∩ Fin)𝑌 𝑦𝑤 (𝑦(ball‘𝑀)𝑑)))
4745, 46sylibrd 248 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin) → 𝑁 ∈ (TotBnd‘𝑌)))
4813, 47impbid 201 1 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ 𝒫 𝑋(𝑌 𝑥𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   ciun 4455   × cxp 5036  cres 5040  cfv 5804  (class class class)co 6549  Fincfn 7841  +crp 11708  Metcme 19553  ballcbl 19554  TotBndctotbnd 32735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-totbnd 32737
This theorem is referenced by:  cntotbnd  32765
  Copyright terms: Public domain W3C validator