MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabeq Structured version   Visualization version   GIF version

Theorem ssrabeq 3651
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
ssrabeq (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrabeq
StepHypRef Expression
1 ssrab2 3650 . . 3 {𝑥𝑉𝜑} ⊆ 𝑉
21biantru 525 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ (𝑉 ⊆ {𝑥𝑉𝜑} ∧ {𝑥𝑉𝜑} ⊆ 𝑉))
3 eqss 3583 . 2 (𝑉 = {𝑥𝑉𝜑} ↔ (𝑉 ⊆ {𝑥𝑉𝜑} ∧ {𝑥𝑉𝜑} ⊆ 𝑉))
42, 3bitr4i 266 1 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  {crab 2900  wss 3540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-in 3547  df-ss 3554
This theorem is referenced by:  difrab0eq  3990
  Copyright terms: Public domain W3C validator