MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonprc Structured version   Visualization version   GIF version

Theorem ssonprc 6884
Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
ssonprc (𝐴 ⊆ On → (𝐴 ∉ V ↔ 𝐴 = On))

Proof of Theorem ssonprc
StepHypRef Expression
1 df-nel 2783 . 2 (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V)
2 ssorduni 6877 . . . . . . . 8 (𝐴 ⊆ On → Ord 𝐴)
3 ordeleqon 6880 . . . . . . . 8 (Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On))
42, 3sylib 207 . . . . . . 7 (𝐴 ⊆ On → ( 𝐴 ∈ On ∨ 𝐴 = On))
54orcomd 402 . . . . . 6 (𝐴 ⊆ On → ( 𝐴 = On ∨ 𝐴 ∈ On))
65ord 391 . . . . 5 (𝐴 ⊆ On → (¬ 𝐴 = On → 𝐴 ∈ On))
7 elex 3185 . . . . . 6 ( 𝐴 ∈ On → 𝐴 ∈ V)
8 uniexb 6866 . . . . . 6 (𝐴 ∈ V ↔ 𝐴 ∈ V)
97, 8sylibr 223 . . . . 5 ( 𝐴 ∈ On → 𝐴 ∈ V)
106, 9syl6 34 . . . 4 (𝐴 ⊆ On → (¬ 𝐴 = On → 𝐴 ∈ V))
1110con1d 138 . . 3 (𝐴 ⊆ On → (¬ 𝐴 ∈ V → 𝐴 = On))
12 onprc 6876 . . . 4 ¬ On ∈ V
13 uniexg 6853 . . . . 5 (𝐴 ∈ V → 𝐴 ∈ V)
14 eleq1 2676 . . . . 5 ( 𝐴 = On → ( 𝐴 ∈ V ↔ On ∈ V))
1513, 14syl5ib 233 . . . 4 ( 𝐴 = On → (𝐴 ∈ V → On ∈ V))
1612, 15mtoi 189 . . 3 ( 𝐴 = On → ¬ 𝐴 ∈ V)
1711, 16impbid1 214 . 2 (𝐴 ⊆ On → (¬ 𝐴 ∈ V ↔ 𝐴 = On))
181, 17syl5bb 271 1 (𝐴 ⊆ On → (𝐴 ∉ V ↔ 𝐴 = On))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382   = wceq 1475  wcel 1977  wnel 2781  Vcvv 3173  wss 3540   cuni 4372  Ord word 5639  Oncon0 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644
This theorem is referenced by:  inaprc  9537
  Copyright terms: Public domain W3C validator