Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnssfz Structured version   Visualization version   GIF version

Theorem ssnnssfz 28937
Description: For any finite subset of , find a superset in the form of a set of sequential integers. (Contributed by Thierry Arnoux, 13-Sep-2017.)
Assertion
Ref Expression
ssnnssfz (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
Distinct variable group:   𝐴,𝑛

Proof of Theorem ssnnssfz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 10908 . . 3 1 ∈ ℕ
2 simpr 476 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 = ∅)
3 0ss 3924 . . . 4 ∅ ⊆ (1...1)
42, 3syl6eqss 3618 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → 𝐴 ⊆ (1...1))
5 oveq2 6557 . . . . 5 (𝑛 = 1 → (1...𝑛) = (1...1))
65sseq2d 3596 . . . 4 (𝑛 = 1 → (𝐴 ⊆ (1...𝑛) ↔ 𝐴 ⊆ (1...1)))
76rspcev 3282 . . 3 ((1 ∈ ℕ ∧ 𝐴 ⊆ (1...1)) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
81, 4, 7sylancr 694 . 2 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
9 elin 3758 . . . . . . 7 (𝐴 ∈ (𝒫 ℕ ∩ Fin) ↔ (𝐴 ∈ 𝒫 ℕ ∧ 𝐴 ∈ Fin))
109simplbi 475 . . . . . 6 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → 𝐴 ∈ 𝒫 ℕ)
1110adantr 480 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ 𝒫 ℕ)
1211elpwid 4118 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ ℕ)
13 nnssre 10901 . . . . . . 7 ℕ ⊆ ℝ
14 ltso 9997 . . . . . . 7 < Or ℝ
15 soss 4977 . . . . . . 7 (ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ))
1613, 14, 15mp2 9 . . . . . 6 < Or ℕ
1716a1i 11 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → < Or ℕ)
189simprbi 479 . . . . . 6 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → 𝐴 ∈ Fin)
1918adantr 480 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Fin)
20 simpr 476 . . . . 5 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
21 fisupcl 8258 . . . . 5 (( < Or ℕ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ)) → sup(𝐴, ℕ, < ) ∈ 𝐴)
2217, 19, 20, 12, 21syl13anc 1320 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ, < ) ∈ 𝐴)
2312, 22sseldd 3569 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → sup(𝐴, ℕ, < ) ∈ ℕ)
2412sselda 3568 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℕ)
25 nnuz 11599 . . . . . . 7 ℕ = (ℤ‘1)
2624, 25syl6eleq 2698 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (ℤ‘1))
2724nnzd 11357 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
2812adantr 480 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝐴 ⊆ ℕ)
2922adantr 480 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ 𝐴)
3028, 29sseldd 3569 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℕ)
3130nnzd 11357 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℤ)
32 fisup2g 8257 . . . . . . . . . . . 12 (( < Or ℕ ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ℕ)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3317, 19, 20, 12, 32syl13anc 1320 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
34 ssrexv 3630 . . . . . . . . . . 11 (𝐴 ⊆ ℕ → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℕ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
3512, 33, 34sylc 63 . . . . . . . . . 10 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ℕ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℕ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
3617, 35supub 8248 . . . . . . . . 9 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴 → ¬ sup(𝐴, ℕ, < ) < 𝑥))
3736imp 444 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → ¬ sup(𝐴, ℕ, < ) < 𝑥)
3824nnred 10912 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
3930nnred 10912 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ ℝ)
4038, 39lenltd 10062 . . . . . . . 8 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → (𝑥 ≤ sup(𝐴, ℕ, < ) ↔ ¬ sup(𝐴, ℕ, < ) < 𝑥))
4137, 40mpbird 246 . . . . . . 7 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℕ, < ))
42 eluz2 11569 . . . . . . 7 (sup(𝐴, ℕ, < ) ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ sup(𝐴, ℕ, < ) ∈ ℤ ∧ 𝑥 ≤ sup(𝐴, ℕ, < )))
4327, 31, 41, 42syl3anbrc 1239 . . . . . 6 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → sup(𝐴, ℕ, < ) ∈ (ℤ𝑥))
44 eluzfz 12208 . . . . . 6 ((𝑥 ∈ (ℤ‘1) ∧ sup(𝐴, ℕ, < ) ∈ (ℤ𝑥)) → 𝑥 ∈ (1...sup(𝐴, ℕ, < )))
4526, 43, 44syl2anc 691 . . . . 5 (((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) ∧ 𝑥𝐴) → 𝑥 ∈ (1...sup(𝐴, ℕ, < )))
4645ex 449 . . . 4 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → (𝑥𝐴𝑥 ∈ (1...sup(𝐴, ℕ, < ))))
4746ssrdv 3574 . . 3 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ (1...sup(𝐴, ℕ, < )))
48 oveq2 6557 . . . . 5 (𝑛 = sup(𝐴, ℕ, < ) → (1...𝑛) = (1...sup(𝐴, ℕ, < )))
4948sseq2d 3596 . . . 4 (𝑛 = sup(𝐴, ℕ, < ) → (𝐴 ⊆ (1...𝑛) ↔ 𝐴 ⊆ (1...sup(𝐴, ℕ, < ))))
5049rspcev 3282 . . 3 ((sup(𝐴, ℕ, < ) ∈ ℕ ∧ 𝐴 ⊆ (1...sup(𝐴, ℕ, < ))) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
5123, 47, 50syl2anc 691 . 2 ((𝐴 ∈ (𝒫 ℕ ∩ Fin) ∧ 𝐴 ≠ ∅) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
528, 51pm2.61dane 2869 1 (𝐴 ∈ (𝒫 ℕ ∩ Fin) → ∃𝑛 ∈ ℕ 𝐴 ⊆ (1...𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   class class class wbr 4583   Or wor 4958  cfv 5804  (class class class)co 6549  Fincfn 7841  supcsup 8229  cr 9814  1c1 9816   < clt 9953  cle 9954  cn 10897  cz 11254  cuz 11563  ...cfz 12197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198
This theorem is referenced by:  esumfsup  29459  esumpcvgval  29467
  Copyright terms: Public domain W3C validator