Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssini | Structured version Visualization version GIF version |
Description: An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
Ref | Expression |
---|---|
ssini.1 | ⊢ 𝐴 ⊆ 𝐵 |
ssini.2 | ⊢ 𝐴 ⊆ 𝐶 |
Ref | Expression |
---|---|
ssini | ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssini.1 | . . 3 ⊢ 𝐴 ⊆ 𝐵 | |
2 | ssini.2 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
3 | 1, 2 | pm3.2i 470 | . 2 ⊢ (𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) |
4 | ssin 3797 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | |
5 | 3, 4 | mpbi 219 | 1 ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∩ cin 3539 ⊆ wss 3540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-in 3547 df-ss 3554 |
This theorem is referenced by: inv1 3922 hartogslem1 8330 xptrrel 13567 fbasrn 21498 limciun 23464 hlimcaui 27477 chdmm1i 27720 chm0i 27733 ledii 27779 lejdii 27781 mayetes3i 27972 mdslj2i 28563 mdslmd2i 28573 sumdmdlem2 28662 sigapildsys 29552 ssoninhaus 31617 icomnfinre 38626 fouriersw 39124 sge0split 39302 |
Copyright terms: Public domain | W3C validator |