Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssiin | Structured version Visualization version GIF version |
Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
ssiin | ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2751 | . 2 ⊢ Ⅎ𝑥𝐶 | |
2 | 1 | ssiinf 4505 | 1 ⊢ (𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∀wral 2896 ⊆ wss 3540 ∩ ciin 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-v 3175 df-in 3547 df-ss 3554 df-iin 4458 |
This theorem is referenced by: cflim2 8968 ptbasfi 21194 limciun 23464 clsint2 31494 fnemeet2 31532 dihglblem4 35604 dihglblem6 35647 iooiinicc 38616 iooiinioc 38630 iinhoiicc 39565 |
Copyright terms: Public domain | W3C validator |