Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdifsn Structured version   Visualization version   GIF version

Theorem ssdifsn 42228
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.)
Assertion
Ref Expression
ssdifsn (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))

Proof of Theorem ssdifsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfss3 3558 . . . 4 (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ ∀𝑥𝐴 𝑥 ∈ (𝐵 ∖ {𝐶}))
2 eldifsn 4260 . . . . 5 (𝑥 ∈ (𝐵 ∖ {𝐶}) ↔ (𝑥𝐵𝑥𝐶))
32ralbii 2963 . . . 4 (∀𝑥𝐴 𝑥 ∈ (𝐵 ∖ {𝐶}) ↔ ∀𝑥𝐴 (𝑥𝐵𝑥𝐶))
41, 3bitri 263 . . 3 (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ ∀𝑥𝐴 (𝑥𝐵𝑥𝐶))
5 r19.26 3046 . . 3 (∀𝑥𝐴 (𝑥𝐵𝑥𝐶) ↔ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 𝑥𝐶))
64, 5bitri 263 . 2 (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 𝑥𝐶))
7 dfss3 3558 . . . 4 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
87bicomi 213 . . 3 (∀𝑥𝐴 𝑥𝐵𝐴𝐵)
9 neirr 2791 . . . . 5 ¬ 𝐶𝐶
10 neeq1 2844 . . . . . 6 (𝑥 = 𝐶 → (𝑥𝐶𝐶𝐶))
1110rspccv 3279 . . . . 5 (∀𝑥𝐴 𝑥𝐶 → (𝐶𝐴𝐶𝐶))
129, 11mtoi 189 . . . 4 (∀𝑥𝐴 𝑥𝐶 → ¬ 𝐶𝐴)
13 eleq1 2676 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
1413biimpcd 238 . . . . . . 7 (𝑥𝐴 → (𝑥 = 𝐶𝐶𝐴))
1514con3rr3 150 . . . . . 6 𝐶𝐴 → (𝑥𝐴 → ¬ 𝑥 = 𝐶))
16 df-ne 2782 . . . . . 6 (𝑥𝐶 ↔ ¬ 𝑥 = 𝐶)
1715, 16syl6ibr 241 . . . . 5 𝐶𝐴 → (𝑥𝐴𝑥𝐶))
1817ralrimiv 2948 . . . 4 𝐶𝐴 → ∀𝑥𝐴 𝑥𝐶)
1912, 18impbii 198 . . 3 (∀𝑥𝐴 𝑥𝐶 ↔ ¬ 𝐶𝐴)
208, 19anbi12i 729 . 2 ((∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 𝑥𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))
216, 20bitri 263 1 (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴𝐵 ∧ ¬ 𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  wss 3540  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-sn 4126
This theorem is referenced by:  elsetrecslem  42243
  Copyright terms: Public domain W3C validator