Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssc2 | Structured version Visualization version GIF version |
Description: Infer subset relation on morphisms from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
ssc2.1 | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
ssc2.2 | ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) |
ssc2.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
ssc2.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
ssc2 | ⊢ (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssc2.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
2 | ssc2.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
3 | ssc2.2 | . . . 4 ⊢ (𝜑 → 𝐻 ⊆cat 𝐽) | |
4 | ssc2.1 | . . . . 5 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
5 | eqidd 2611 | . . . . . 6 ⊢ (𝜑 → dom dom 𝐽 = dom dom 𝐽) | |
6 | 3, 5 | sscfn2 16301 | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (dom dom 𝐽 × dom dom 𝐽)) |
7 | sscrel 16296 | . . . . . . 7 ⊢ Rel ⊆cat | |
8 | 7 | brrelex2i 5083 | . . . . . 6 ⊢ (𝐻 ⊆cat 𝐽 → 𝐽 ∈ V) |
9 | dmexg 6989 | . . . . . 6 ⊢ (𝐽 ∈ V → dom 𝐽 ∈ V) | |
10 | dmexg 6989 | . . . . . 6 ⊢ (dom 𝐽 ∈ V → dom dom 𝐽 ∈ V) | |
11 | 3, 8, 9, 10 | 4syl 19 | . . . . 5 ⊢ (𝜑 → dom dom 𝐽 ∈ V) |
12 | 4, 6, 11 | isssc 16303 | . . . 4 ⊢ (𝜑 → (𝐻 ⊆cat 𝐽 ↔ (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)))) |
13 | 3, 12 | mpbid 221 | . . 3 ⊢ (𝜑 → (𝑆 ⊆ dom dom 𝐽 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦))) |
14 | 13 | simprd 478 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) |
15 | oveq1 6556 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐻𝑦) = (𝑋𝐻𝑦)) | |
16 | oveq1 6556 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐽𝑦) = (𝑋𝐽𝑦)) | |
17 | 15, 16 | sseq12d 3597 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦) ↔ (𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦))) |
18 | oveq2 6557 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐻𝑦) = (𝑋𝐻𝑌)) | |
19 | oveq2 6557 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐽𝑦) = (𝑋𝐽𝑌)) | |
20 | 18, 19 | sseq12d 3597 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐻𝑦) ⊆ (𝑋𝐽𝑦) ↔ (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌))) |
21 | 17, 20 | rspc2va 3294 | . 2 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥𝐻𝑦) ⊆ (𝑥𝐽𝑦)) → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
22 | 1, 2, 14, 21 | syl21anc 1317 | 1 ⊢ (𝜑 → (𝑋𝐻𝑌) ⊆ (𝑋𝐽𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 ⊆ wss 3540 class class class wbr 4583 × cxp 5036 dom cdm 5038 Fn wfn 5799 (class class class)co 6549 ⊆cat cssc 16290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-ixp 7795 df-ssc 16293 |
This theorem is referenced by: ssctr 16308 ssceq 16309 subcss2 16326 |
Copyright terms: Public domain | W3C validator |