Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srhmsubcALTVlem3 Structured version   Visualization version   GIF version

Theorem srhmsubcALTVlem3 41886
 Description: Lemma 3 for srhmsubcALTV 41887. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
srhmsubcALTV.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubcALTV.c 𝐶 = (𝑈𝑆)
srhmsubcALTV.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
srhmsubcALTVlem3 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌))
Distinct variable groups:   𝑆,𝑟   𝑋,𝑟   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠   𝑋,𝑠   𝑌,𝑟,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝐽(𝑠,𝑟)

Proof of Theorem srhmsubcALTVlem3
StepHypRef Expression
1 srhmsubcALTV.j . . . 4 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
21a1i 11 . . 3 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
3 oveq12 6558 . . . 4 ((𝑟 = 𝑋𝑠 = 𝑌) → (𝑟 RingHom 𝑠) = (𝑋 RingHom 𝑌))
43adantl 481 . . 3 (((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) ∧ (𝑟 = 𝑋𝑠 = 𝑌)) → (𝑟 RingHom 𝑠) = (𝑋 RingHom 𝑌))
5 simpl 472 . . . 4 ((𝑋𝐶𝑌𝐶) → 𝑋𝐶)
65adantl 481 . . 3 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → 𝑋𝐶)
7 simpr 476 . . . 4 ((𝑋𝐶𝑌𝐶) → 𝑌𝐶)
87adantl 481 . . 3 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → 𝑌𝐶)
9 ovex 6577 . . . 4 (𝑋 RingHom 𝑌) ∈ V
109a1i 11 . . 3 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋 RingHom 𝑌) ∈ V)
112, 4, 6, 8, 10ovmpt2d 6686 . 2 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐽𝑌) = (𝑋 RingHom 𝑌))
12 eqid 2610 . . 3 (RingCatALTV‘𝑈) = (RingCatALTV‘𝑈)
13 eqid 2610 . . 3 (Base‘(RingCatALTV‘𝑈)) = (Base‘(RingCatALTV‘𝑈))
14 simpl 472 . . 3 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → 𝑈𝑉)
15 eqid 2610 . . 3 (Hom ‘(RingCatALTV‘𝑈)) = (Hom ‘(RingCatALTV‘𝑈))
16 srhmsubcALTV.s . . . . 5 𝑟𝑆 𝑟 ∈ Ring
17 srhmsubcALTV.c . . . . 5 𝐶 = (𝑈𝑆)
1816, 17srhmsubcALTVlem2 41885 . . . 4 ((𝑈𝑉𝑋𝐶) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈)))
195, 18sylan2 490 . . 3 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → 𝑋 ∈ (Base‘(RingCatALTV‘𝑈)))
2016, 17srhmsubcALTVlem2 41885 . . . 4 ((𝑈𝑉𝑌𝐶) → 𝑌 ∈ (Base‘(RingCatALTV‘𝑈)))
217, 20sylan2 490 . . 3 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → 𝑌 ∈ (Base‘(RingCatALTV‘𝑈)))
2212, 13, 14, 15, 19, 21ringchomALTV 41840 . 2 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌) = (𝑋 RingHom 𝑌))
2311, 22eqtr4d 2647 1 ((𝑈𝑉 ∧ (𝑋𝐶𝑌𝐶)) → (𝑋𝐽𝑌) = (𝑋(Hom ‘(RingCatALTV‘𝑈))𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ∩ cin 3539  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Basecbs 15695  Hom chom 15779  Ringcrg 18370   RingHom crh 18535  RingCatALTVcringcALTV 41796 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-hom 15793  df-cco 15794  df-ringcALTV 41798 This theorem is referenced by:  srhmsubcALTV  41887
 Copyright terms: Public domain W3C validator