Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqsscirc1 Structured version   Visualization version   GIF version

Theorem sqsscirc1 29282
Description: The complex square of side 𝐷 is a subset of the complex circle of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Assertion
Ref Expression
sqsscirc1 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷))

Proof of Theorem sqsscirc1
StepHypRef Expression
1 simp-4l 802 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑋 ∈ ℝ)
21resqcld 12897 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋↑2) ∈ ℝ)
3 simpllr 795 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌))
43simpld 474 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑌 ∈ ℝ)
54resqcld 12897 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌↑2) ∈ ℝ)
62, 5readdcld 9948 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝑋↑2) + (𝑌↑2)) ∈ ℝ)
71sqge0d 12898 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝑋↑2))
84sqge0d 12898 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝑌↑2))
92, 5, 7, 8addge0d 10482 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ ((𝑋↑2) + (𝑌↑2)))
106, 9resqrtcld 14004 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) ∈ ℝ)
11 simplr 788 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝐷 ∈ ℝ+)
1211rpred 11748 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝐷 ∈ ℝ)
1312rehalfcld 11156 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝐷 / 2) ∈ ℝ)
1413resqcld 12897 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝐷 / 2)↑2) ∈ ℝ)
1514, 14readdcld 9948 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)) ∈ ℝ)
1613sqge0d 12898 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ ((𝐷 / 2)↑2))
1714, 14, 16, 16addge0d 10482 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
1815, 17resqrtcld 14004 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) ∈ ℝ)
19 simprl 790 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑋 < (𝐷 / 2))
20 simp-4r 803 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝑋)
21 2rp 11713 . . . . . . . . 9 2 ∈ ℝ+
2221a1i 11 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 2 ∈ ℝ+)
2311rpge0d 11752 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝐷)
2412, 22, 23divge0d 11788 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝐷 / 2))
251, 13, 20, 24lt2sqd 12905 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋 < (𝐷 / 2) ↔ (𝑋↑2) < ((𝐷 / 2)↑2)))
2619, 25mpbid 221 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋↑2) < ((𝐷 / 2)↑2))
27 simprr 792 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑌 < (𝐷 / 2))
283simprd 478 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝑌)
294, 13, 28, 24lt2sqd 12905 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌 < (𝐷 / 2) ↔ (𝑌↑2) < ((𝐷 / 2)↑2)))
3027, 29mpbid 221 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌↑2) < ((𝐷 / 2)↑2))
312, 5, 14, 14, 26, 30lt2addd 10529 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝑋↑2) + (𝑌↑2)) < (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
326, 9, 15, 17sqrtltd 14014 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (((𝑋↑2) + (𝑌↑2)) < (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)) ↔ (√‘((𝑋↑2) + (𝑌↑2))) < (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))))
3331, 32mpbid 221 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) < (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))))
34 rpre 11715 . . . . . . . . . . 11 (𝐷 ∈ ℝ+𝐷 ∈ ℝ)
3534rehalfcld 11156 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → (𝐷 / 2) ∈ ℝ)
3635resqcld 12897 . . . . . . . . 9 (𝐷 ∈ ℝ+ → ((𝐷 / 2)↑2) ∈ ℝ)
3736recnd 9947 . . . . . . . 8 (𝐷 ∈ ℝ+ → ((𝐷 / 2)↑2) ∈ ℂ)
38372timesd 11152 . . . . . . 7 (𝐷 ∈ ℝ+ → (2 · ((𝐷 / 2)↑2)) = (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
3938fveq2d 6107 . . . . . 6 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))))
4021a1i 11 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 2 ∈ ℝ+)
41 rpge0 11721 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 0 ≤ 𝐷)
4234, 40, 41divge0d 11788 . . . . . . . . 9 (𝐷 ∈ ℝ+ → 0 ≤ (𝐷 / 2))
4335, 42sqrtsqd 14006 . . . . . . . 8 (𝐷 ∈ ℝ+ → (√‘((𝐷 / 2)↑2)) = (𝐷 / 2))
4443oveq2d 6565 . . . . . . 7 (𝐷 ∈ ℝ+ → ((√‘2) · (√‘((𝐷 / 2)↑2))) = ((√‘2) · (𝐷 / 2)))
45 2re 10967 . . . . . . . . 9 2 ∈ ℝ
4645a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 2 ∈ ℝ)
47 0le2 10988 . . . . . . . . 9 0 ≤ 2
4847a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 0 ≤ 2)
4935sqge0d 12898 . . . . . . . 8 (𝐷 ∈ ℝ+ → 0 ≤ ((𝐷 / 2)↑2))
5046, 48, 36, 49sqrtmuld 14011 . . . . . . 7 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = ((√‘2) · (√‘((𝐷 / 2)↑2))))
51 2cnd 10970 . . . . . . . . 9 (𝐷 ∈ ℝ+ → 2 ∈ ℂ)
5251sqrtcld 14024 . . . . . . . 8 (𝐷 ∈ ℝ+ → (√‘2) ∈ ℂ)
53 rpcn 11717 . . . . . . . 8 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
54 2ne0 10990 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 2 ≠ 0)
5652, 51, 53, 55div32d 10703 . . . . . . 7 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) = ((√‘2) · (𝐷 / 2)))
5744, 50, 563eqtr4d 2654 . . . . . 6 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = (((√‘2) / 2) · 𝐷))
5839, 57eqtr3d 2646 . . . . 5 (𝐷 ∈ ℝ+ → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) = (((√‘2) / 2) · 𝐷))
59 2lt4 11075 . . . . . . . . . 10 2 < 4
60 4re 10974 . . . . . . . . . . 11 4 ∈ ℝ
61 0re 9919 . . . . . . . . . . . 12 0 ∈ ℝ
62 4pos 10993 . . . . . . . . . . . 12 0 < 4
6361, 60, 62ltleii 10039 . . . . . . . . . . 11 0 ≤ 4
64 sqrtlt 13850 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4)))
6545, 47, 60, 63, 64mp4an 705 . . . . . . . . . 10 (2 < 4 ↔ (√‘2) < (√‘4))
6659, 65mpbi 219 . . . . . . . . 9 (√‘2) < (√‘4)
67 2pos 10989 . . . . . . . . . . 11 0 < 2
6845, 67sqrtpclii 13970 . . . . . . . . . 10 (√‘2) ∈ ℝ
6960, 62sqrtpclii 13970 . . . . . . . . . 10 (√‘4) ∈ ℝ
7068, 69, 45, 67ltdiv1ii 10832 . . . . . . . . 9 ((√‘2) < (√‘4) ↔ ((√‘2) / 2) < ((√‘4) / 2))
7166, 70mpbi 219 . . . . . . . 8 ((√‘2) / 2) < ((√‘4) / 2)
72 sqrtsq 13858 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 0 ≤ 2) → (√‘(2↑2)) = 2)
7345, 47, 72mp2an 704 . . . . . . . . . 10 (√‘(2↑2)) = 2
7473oveq1i 6559 . . . . . . . . 9 ((√‘(2↑2)) / 2) = (2 / 2)
75 sq2 12822 . . . . . . . . . . 11 (2↑2) = 4
7675fveq2i 6106 . . . . . . . . . 10 (√‘(2↑2)) = (√‘4)
7776oveq1i 6559 . . . . . . . . 9 ((√‘(2↑2)) / 2) = ((√‘4) / 2)
78 2div2e1 11027 . . . . . . . . 9 (2 / 2) = 1
7974, 77, 783eqtr3i 2640 . . . . . . . 8 ((√‘4) / 2) = 1
8071, 79breqtri 4608 . . . . . . 7 ((√‘2) / 2) < 1
8146, 48resqrtcld 14004 . . . . . . . . 9 (𝐷 ∈ ℝ+ → (√‘2) ∈ ℝ)
8281rehalfcld 11156 . . . . . . . 8 (𝐷 ∈ ℝ+ → ((√‘2) / 2) ∈ ℝ)
83 1red 9934 . . . . . . . 8 (𝐷 ∈ ℝ+ → 1 ∈ ℝ)
84 id 22 . . . . . . . 8 (𝐷 ∈ ℝ+𝐷 ∈ ℝ+)
8582, 83, 84ltmul1d 11789 . . . . . . 7 (𝐷 ∈ ℝ+ → (((√‘2) / 2) < 1 ↔ (((√‘2) / 2) · 𝐷) < (1 · 𝐷)))
8680, 85mpbii 222 . . . . . 6 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) < (1 · 𝐷))
8753mulid2d 9937 . . . . . 6 (𝐷 ∈ ℝ+ → (1 · 𝐷) = 𝐷)
8886, 87breqtrd 4609 . . . . 5 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) < 𝐷)
8958, 88eqbrtrd 4605 . . . 4 (𝐷 ∈ ℝ+ → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) < 𝐷)
9011, 89syl 17 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) < 𝐷)
9110, 18, 12, 33, 90lttrd 10077 . 2 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷)
9291ex 449 1 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954   / cdiv 10563  2c2 10947  4c4 10949  +crp 11708  cexp 12722  csqrt 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  sqsscirc2  29283
  Copyright terms: Public domain W3C validator