Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqrtpwpw2p Structured version   Visualization version   GIF version

Theorem sqrtpwpw2p 39988
Description: The floor of the square root of 2 to the power of 2 to the power of a positive integer plus a bounded nonnegative integer. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
sqrtpwpw2p ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))))

Proof of Theorem sqrtpwpw2p
StepHypRef Expression
1 nncn 10905 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
3 npcan1 10334 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
42, 3syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑁 − 1) + 1) = 𝑁)
54eqcomd 2616 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑁 = ((𝑁 − 1) + 1))
65oveq2d 6565 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑𝑁) = (2↑((𝑁 − 1) + 1)))
7 2cnd 10970 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℂ)
8 nnm1nn0 11211 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
98adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑁 − 1) ∈ ℕ0)
107, 9expp1d 12871 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑((𝑁 − 1) + 1)) = ((2↑(𝑁 − 1)) · 2))
116, 10eqtrd 2644 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑𝑁) = ((2↑(𝑁 − 1)) · 2))
1211oveq2d 6565 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) = (2↑((2↑(𝑁 − 1)) · 2)))
13 2nn0 11186 . . . . . . . . . 10 2 ∈ ℕ0
1413a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ0)
1513a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
1615, 8nn0expcld 12893 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℕ0)
1716adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(𝑁 − 1)) ∈ ℕ0)
187, 14, 17expmuld 12873 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑((2↑(𝑁 − 1)) · 2)) = ((2↑(2↑(𝑁 − 1)))↑2))
1912, 18eqtrd 2644 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) = ((2↑(2↑(𝑁 − 1)))↑2))
20 nn0ge0 11195 . . . . . . . . 9 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2120adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ 𝑀)
22 nnnn0 11176 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2315, 22nn0expcld 12893 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
2415, 23nn0expcld 12893 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ0)
2524nn0red 11229 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℝ)
26 nn0re 11178 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2725, 26anim12i 588 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ))
28 addge01 10417 . . . . . . . . 9 (((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ (2↑(2↑𝑁)) ≤ ((2↑(2↑𝑁)) + 𝑀)))
2927, 28syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝑀 ↔ (2↑(2↑𝑁)) ≤ ((2↑(2↑𝑁)) + 𝑀)))
3021, 29mpbid 221 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) ≤ ((2↑(2↑𝑁)) + 𝑀))
3119, 30eqbrtrrd 4607 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((2↑(2↑𝑁)) + 𝑀))
3224adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℕ0)
33 simpr 476 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
3432, 33nn0addcld 11232 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0)
35 nn0re 11178 . . . . . . . . 9 (((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0 → ((2↑(2↑𝑁)) + 𝑀) ∈ ℝ)
36 nn0ge0 11195 . . . . . . . . 9 (((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0 → 0 ≤ ((2↑(2↑𝑁)) + 𝑀))
3735, 36jca 553 . . . . . . . 8 (((2↑(2↑𝑁)) + 𝑀) ∈ ℕ0 → (((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)))
3834, 37syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)))
39 resqrtth 13844 . . . . . . 7 ((((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)) → ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) = ((2↑(2↑𝑁)) + 𝑀))
4038, 39syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) = ((2↑(2↑𝑁)) + 𝑀))
4131, 40breqtrrd 4611 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2))
4215, 16nn0expcld 12893 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 − 1))) ∈ ℕ0)
43 nn0re 11178 . . . . . . . . 9 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → (2↑(2↑(𝑁 − 1))) ∈ ℝ)
44 nn0ge0 11195 . . . . . . . . 9 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → 0 ≤ (2↑(2↑(𝑁 − 1))))
4543, 44jca 553 . . . . . . . 8 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → ((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))))
4642, 45syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))))
4746adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))))
48 resqrtcl 13842 . . . . . . 7 ((((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)) → (√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ)
4938, 48syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ)
50 sqrtge0 13846 . . . . . . 7 ((((2↑(2↑𝑁)) + 𝑀) ∈ ℝ ∧ 0 ≤ ((2↑(2↑𝑁)) + 𝑀)) → 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
5138, 50syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
52 le2sq 12800 . . . . . 6 ((((2↑(2↑(𝑁 − 1))) ∈ ℝ ∧ 0 ≤ (2↑(2↑(𝑁 − 1)))) ∧ ((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))) → ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ↔ ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2)))
5347, 49, 51, 52syl12anc 1316 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ↔ ((2↑(2↑(𝑁 − 1)))↑2) ≤ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2)))
5441, 53mpbird 246 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
55543adant3 1074 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)))
5626adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℝ)
57 peano2nn0 11210 . . . . . . . . . . . . 13 ((2↑(𝑁 − 1)) ∈ ℕ0 → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
5816, 57syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) + 1) ∈ ℕ0)
5915, 58nn0expcld 12893 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0)
6059adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0)
61 peano2nn0 11210 . . . . . . . . . 10 ((2↑((2↑(𝑁 − 1)) + 1)) ∈ ℕ0 → ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℕ0)
6260, 61syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℕ0)
6362nn0red 11229 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℝ)
6432nn0red 11229 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℝ)
65 axltadd 9990 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ ((2↑((2↑(𝑁 − 1)) + 1)) + 1) ∈ ℝ ∧ (2↑(2↑𝑁)) ∈ ℝ) → (𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1) → ((2↑(2↑𝑁)) + 𝑀) < ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1))))
6656, 63, 64, 65syl3anc 1318 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1) → ((2↑(2↑𝑁)) + 𝑀) < ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1))))
67663impia 1253 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((2↑(2↑𝑁)) + 𝑀) < ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
6824nn0cnd 11230 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℂ)
69683ad2ant1 1075 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (2↑(2↑𝑁)) ∈ ℂ)
7059nn0cnd 11230 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℂ)
71703ad2ant1 1075 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (2↑((2↑(𝑁 − 1)) + 1)) ∈ ℂ)
72 1cnd 9935 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → 1 ∈ ℂ)
7369, 71, 72addassd 9941 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1) = ((2↑(2↑𝑁)) + ((2↑((2↑(𝑁 − 1)) + 1)) + 1)))
7467, 73breqtrrd 4611 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((2↑(2↑𝑁)) + 𝑀) < (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
7542nn0cnd 11230 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 − 1))) ∈ ℂ)
76 binom21 12842 . . . . . . . . . 10 ((2↑(2↑(𝑁 − 1))) ∈ ℂ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
7775, 76syl 17 . . . . . . . . 9 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1))
78 2cnd 10970 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℂ)
7978, 15, 16expmuld 12873 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) · 2)) = ((2↑(2↑(𝑁 − 1)))↑2))
8078, 8expp1d 12871 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2↑((𝑁 − 1) + 1)) = ((2↑(𝑁 − 1)) · 2))
811, 3syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
8281oveq2d 6565 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (2↑((𝑁 − 1) + 1)) = (2↑𝑁))
8380, 82eqtr3d 2646 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → ((2↑(𝑁 − 1)) · 2) = (2↑𝑁))
8483oveq2d 6565 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) · 2)) = (2↑(2↑𝑁)))
8579, 84eqtr3d 2646 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((2↑(2↑(𝑁 − 1)))↑2) = (2↑(2↑𝑁)))
8678, 75mulcomd 9940 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 · (2↑(2↑(𝑁 − 1)))) = ((2↑(2↑(𝑁 − 1))) · 2))
8778, 16expp1d 12871 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑((2↑(𝑁 − 1)) + 1)) = ((2↑(2↑(𝑁 − 1))) · 2))
8886, 87eqtr4d 2647 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · (2↑(2↑(𝑁 − 1)))) = (2↑((2↑(𝑁 − 1)) + 1)))
8985, 88oveq12d 6567 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) = ((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))))
9089oveq1d 6564 . . . . . . . . 9 (𝑁 ∈ ℕ → ((((2↑(2↑(𝑁 − 1)))↑2) + (2 · (2↑(2↑(𝑁 − 1))))) + 1) = (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
9177, 90eqtrd 2644 . . . . . . . 8 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
9291adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑(𝑁 − 1))) + 1)↑2) = (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1))
9340, 92breq12d 4596 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2) ↔ ((2↑(2↑𝑁)) + 𝑀) < (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1)))
94933adant3 1074 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2) ↔ ((2↑(2↑𝑁)) + 𝑀) < (((2↑(2↑𝑁)) + (2↑((2↑(𝑁 − 1)) + 1))) + 1)))
9574, 94mpbird 246 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2))
9634nn0red 11229 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((2↑(2↑𝑁)) + 𝑀) ∈ ℝ)
97 nn0ge0 11195 . . . . . . . . . . 11 ((2↑(2↑𝑁)) ∈ ℕ0 → 0 ≤ (2↑(2↑𝑁)))
9824, 97syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ (2↑(2↑𝑁)))
9998, 20anim12i 588 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (0 ≤ (2↑(2↑𝑁)) ∧ 0 ≤ 𝑀))
10027, 99jca 553 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (0 ≤ (2↑(2↑𝑁)) ∧ 0 ≤ 𝑀)))
101 addge0 10396 . . . . . . . 8 ((((2↑(2↑𝑁)) ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ (0 ≤ (2↑(2↑𝑁)) ∧ 0 ≤ 𝑀)) → 0 ≤ ((2↑(2↑𝑁)) + 𝑀))
102100, 101syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ ((2↑(2↑𝑁)) + 𝑀))
10396, 102resqrtcld 14004 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ)
104 peano2nn0 11210 . . . . . . . . 9 ((2↑(2↑(𝑁 − 1))) ∈ ℕ0 → ((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0)
10542, 104syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0)
106 nn0re 11178 . . . . . . . . 9 (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0 → ((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ)
107 nn0ge0 11195 . . . . . . . . 9 (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0 → 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1))
108106, 107jca 553 . . . . . . . 8 (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℕ0 → (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1)))
109105, 108syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1)))
110109adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1)))
111 lt2sq 12799 . . . . . 6 ((((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ 0 ≤ (√‘((2↑(2↑𝑁)) + 𝑀))) ∧ (((2↑(2↑(𝑁 − 1))) + 1) ∈ ℝ ∧ 0 ≤ ((2↑(2↑(𝑁 − 1))) + 1))) → ((√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1) ↔ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2)))
112103, 51, 110, 111syl21anc 1317 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1) ↔ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2)))
1131123adant3 1074 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1) ↔ ((√‘((2↑(2↑𝑁)) + 𝑀))↑2) < (((2↑(2↑(𝑁 − 1))) + 1)↑2)))
11495, 113mpbird 246 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1))
11555, 114jca 553 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ∧ (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1)))
11642nn0zd 11356 . . . . . 6 (𝑁 ∈ ℕ → (2↑(2↑(𝑁 − 1))) ∈ ℤ)
117116adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (2↑(2↑(𝑁 − 1))) ∈ ℤ)
11849, 117jca 553 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ (2↑(2↑(𝑁 − 1))) ∈ ℤ))
1191183adant3 1074 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ (2↑(2↑(𝑁 − 1))) ∈ ℤ))
120 flbi 12479 . . 3 (((√‘((2↑(2↑𝑁)) + 𝑀)) ∈ ℝ ∧ (2↑(2↑(𝑁 − 1))) ∈ ℤ) → ((⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))) ↔ ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ∧ (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1))))
121119, 120syl 17 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → ((⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))) ↔ ((2↑(2↑(𝑁 − 1))) ≤ (√‘((2↑(2↑𝑁)) + 𝑀)) ∧ (√‘((2↑(2↑𝑁)) + 𝑀)) < ((2↑(2↑(𝑁 − 1))) + 1))))
122115, 121mpbird 246 1 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ0𝑀 < ((2↑((2↑(𝑁 − 1)) + 1)) + 1)) → (⌊‘(√‘((2↑(2↑𝑁)) + 𝑀))) = (2↑(2↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  cn 10897  2c2 10947  0cn0 11169  cz 11254  cfl 12453  cexp 12722  csqrt 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823
This theorem is referenced by:  fmtnosqrt  39989
  Copyright terms: Public domain W3C validator