Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem4 Structured version   Visualization version   GIF version

Theorem sqrlem4 13834
 Description: Lemma for 01sqrex 13838. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
Assertion
Ref Expression
sqrlem4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑆(𝑥)

Proof of Theorem sqrlem4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
2 sqrlem1.1 . . . . . 6 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
32, 1sqrlem3 13833 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
4 suprcl 10862 . . . . 5 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) → sup(𝑆, ℝ, < ) ∈ ℝ)
53, 4syl 17 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ∈ ℝ)
61, 5syl5eqel 2692 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
7 rpgt0 11720 . . . . 5 (𝐴 ∈ ℝ+ → 0 < 𝐴)
87adantr 480 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 0 < 𝐴)
92, 1sqrlem2 13832 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝑆)
10 suprub 10863 . . . . . 6 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
113, 9, 10syl2anc 691 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ≤ sup(𝑆, ℝ, < ))
1211, 1syl6breqr 4625 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴𝐵)
13 rpre 11715 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
1413adantr 480 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ)
15 0re 9919 . . . . . 6 0 ∈ ℝ
16 ltletr 10008 . . . . . 6 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
1715, 16mp3an1 1403 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
1814, 6, 17syl2anc 691 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((0 < 𝐴𝐴𝐵) → 0 < 𝐵))
198, 12, 18mp2and 711 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 0 < 𝐵)
206, 19elrpd 11745 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ+)
212, 1sqrlem1 13831 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∀𝑧𝑆 𝑧 ≤ 1)
22 1re 9918 . . . . 5 1 ∈ ℝ
23 suprleub 10866 . . . . 5 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ 1 ∈ ℝ) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧𝑆 𝑧 ≤ 1))
243, 22, 23sylancl 693 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) ≤ 1 ↔ ∀𝑧𝑆 𝑧 ≤ 1))
2521, 24mpbird 246 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → sup(𝑆, ℝ, < ) ≤ 1)
261, 25syl5eqbr 4618 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ≤ 1)
2720, 26jca 553 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583  (class class class)co 6549  supcsup 8229  ℝcr 9814  0cc0 9815  1c1 9816   < clt 9953   ≤ cle 9954  2c2 10947  ℝ+crp 11708  ↑cexp 12722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723 This theorem is referenced by:  sqrlem5  13835  sqrlem7  13837  01sqrex  13838
 Copyright terms: Public domain W3C validator