MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqreu Structured version   Visualization version   GIF version

Theorem sqreu 13948
Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqreu (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Distinct variable group:   𝑥,𝐴

Proof of Theorem sqreu
StepHypRef Expression
1 abscl 13866 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
21recnd 9947 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
3 subneg 10209 . . . . . . 7 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
42, 3mpancom 700 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
54eqeq1d 2612 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
6 negcl 10160 . . . . . 6 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
72, 6subeq0ad 10281 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
85, 7bitr3d 269 . . . 4 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
9 ax-icn 9874 . . . . . . 7 i ∈ ℂ
10 absge0 13875 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
111, 10jca 553 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)))
12 eleq1 2676 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ∈ ℝ ↔ -𝐴 ∈ ℝ))
13 breq2 4587 . . . . . . . . . . . 12 ((abs‘𝐴) = -𝐴 → (0 ≤ (abs‘𝐴) ↔ 0 ≤ -𝐴))
1412, 13anbi12d 743 . . . . . . . . . . 11 ((abs‘𝐴) = -𝐴 → (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)))
1511, 14syl5ib 233 . . . . . . . . . 10 ((abs‘𝐴) = -𝐴 → (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴)))
1615impcom 445 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴))
17 resqrtcl 13842 . . . . . . . . 9 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (√‘-𝐴) ∈ ℝ)
1816, 17syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (√‘-𝐴) ∈ ℝ)
1918recnd 9947 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (√‘-𝐴) ∈ ℂ)
20 mulcl 9899 . . . . . . 7 ((i ∈ ℂ ∧ (√‘-𝐴) ∈ ℂ) → (i · (√‘-𝐴)) ∈ ℂ)
219, 19, 20sylancr 694 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (i · (√‘-𝐴)) ∈ ℂ)
22 sqrtneglem 13855 . . . . . . . 8 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
2316, 22syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
24 negneg 10210 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
2524adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → --𝐴 = 𝐴)
2625eqeq2d 2620 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = --𝐴 ↔ ((i · (√‘-𝐴))↑2) = 𝐴))
27263anbi1d 1395 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → ((((i · (√‘-𝐴))↑2) = --𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+) ↔ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)))
2823, 27mpbid 221 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+))
29 oveq1 6556 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (𝑥↑2) = ((i · (√‘-𝐴))↑2))
3029eqeq1d 2612 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → ((𝑥↑2) = 𝐴 ↔ ((i · (√‘-𝐴))↑2) = 𝐴))
31 fveq2 6103 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (ℜ‘𝑥) = (ℜ‘(i · (√‘-𝐴))))
3231breq2d 4595 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(i · (√‘-𝐴)))))
33 oveq2 6557 . . . . . . . . 9 (𝑥 = (i · (√‘-𝐴)) → (i · 𝑥) = (i · (i · (√‘-𝐴))))
34 neleq1 2888 . . . . . . . . 9 ((i · 𝑥) = (i · (i · (√‘-𝐴))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘-𝐴))) ∉ ℝ+))
3533, 34syl 17 . . . . . . . 8 (𝑥 = (i · (√‘-𝐴)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (i · (√‘-𝐴))) ∉ ℝ+))
3630, 32, 353anbi123d 1391 . . . . . . 7 (𝑥 = (i · (√‘-𝐴)) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)))
3736rspcev 3282 . . . . . 6 (((i · (√‘-𝐴)) ∈ ℂ ∧ (((i · (√‘-𝐴))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘(i · (√‘-𝐴))) ∧ (i · (i · (√‘-𝐴))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3821, 28, 37syl2anc 691 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = -𝐴) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3938ex 449 . . . 4 (𝐴 ∈ ℂ → ((abs‘𝐴) = -𝐴 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
408, 39sylbid 229 . . 3 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
41 resqrtcl 13842 . . . . . . . . 9 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (√‘(abs‘𝐴)) ∈ ℝ)
421, 10, 41syl2anc 691 . . . . . . . 8 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
4342recnd 9947 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
4443adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (√‘(abs‘𝐴)) ∈ ℂ)
45 addcl 9897 . . . . . . . . 9 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
462, 45mpancom 700 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) + 𝐴) ∈ ℂ)
4746adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
48 abscl 13866 . . . . . . . . . 10 (((abs‘𝐴) + 𝐴) ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
4946, 48syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
5049recnd 9947 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
5150adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
5246abs00ad 13878 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
5352necon3bid 2826 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) ≠ 0 ↔ ((abs‘𝐴) + 𝐴) ≠ 0))
5453biimpar 501 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
5547, 51, 54divcld 10680 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℂ)
5644, 55mulcld 9939 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
57 eqid 2610 . . . . . 6 ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
5857sqreulem 13947 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
59 oveq1 6556 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (𝑥↑2) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2))
6059eqeq1d 2612 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → ((𝑥↑2) = 𝐴 ↔ (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴))
61 fveq2 6103 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (ℜ‘𝑥) = (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
6261breq2d 4595 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))))))
63 oveq2 6557 . . . . . . . 8 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (i · 𝑥) = (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
64 neleq1 2888 . . . . . . . 8 ((i · 𝑥) = (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
6563, 64syl 17 . . . . . . 7 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → ((i · 𝑥) ∉ ℝ+ ↔ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+))
6660, 62, 653anbi123d 1391 . . . . . 6 (𝑥 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) → (((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)))
6766rspcev 3282 . . . . 5 ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ ∧ ((((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = 𝐴 ∧ 0 ≤ (ℜ‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (i · ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) ∉ ℝ+)) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
6856, 58, 67syl2anc 691 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
6968ex 449 . . 3 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) ≠ 0 → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
7040, 69pm2.61dne 2868 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
71 sqrmo 13840 . 2 (𝐴 ∈ ℂ → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
72 reu5 3136 . 2 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (∃𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
7370, 71, 72sylanbrc 695 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wnel 2781  wrex 2897  ∃!wreu 2898  ∃*wrmo 2899   class class class wbr 4583  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  ici 9817   + caddc 9818   · cmul 9820  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  +crp 11708  cexp 12722  cre 13685  csqrt 13821  abscabs 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  sqrtcl  13949  sqrtthlem  13950  eqsqrtd  13955
  Copyright terms: Public domain W3C validator