MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqgcd Structured version   Visualization version   GIF version

Theorem sqgcd 15116
Description: Square distributes over GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
sqgcd ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2)))

Proof of Theorem sqgcd
StepHypRef Expression
1 nnz 11276 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
2 nnz 11276 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
31, 2anim12i 588 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 nnne0 10930 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
54neneqd 2787 . . . . . . . 8 (𝑀 ∈ ℕ → ¬ 𝑀 = 0)
65intnanrd 954 . . . . . . 7 (𝑀 ∈ ℕ → ¬ (𝑀 = 0 ∧ 𝑁 = 0))
76adantr 480 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ (𝑀 = 0 ∧ 𝑁 = 0))
8 gcdn0cl 15062 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ)
93, 7, 8syl2anc 691 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ)
109nnsqcld 12891 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∈ ℕ)
1110nncnd 10913 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∈ ℂ)
1211mulid1d 9936 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀 gcd 𝑁)↑2))
13 nnsqcl 12795 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℕ)
1413nnzd 11357 . . . . . 6 (𝑀 ∈ ℕ → (𝑀↑2) ∈ ℤ)
1514adantr 480 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀↑2) ∈ ℤ)
16 nnsqcl 12795 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℕ)
1716nnzd 11357 . . . . . 6 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℤ)
1817adantl 481 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁↑2) ∈ ℤ)
19 gcddvds 15063 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
201, 2, 19syl2an 493 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
2120simpld 474 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ 𝑀)
229nnzd 11357 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℤ)
231adantr 480 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
24 dvdssqim 15111 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2)))
2522, 23, 24syl2anc 691 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2)))
2621, 25mpd 15 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2))
2720simprd 478 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∥ 𝑁)
282adantl 481 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
29 dvdssqim 15111 . . . . . . 7 (((𝑀 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2)))
3022, 28, 29syl2anc 691 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑁 → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2)))
3127, 30mpd 15 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2))
32 gcddiv 15106 . . . . 5 ((((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ ∧ ((𝑀 gcd 𝑁)↑2) ∈ ℕ) ∧ (((𝑀 gcd 𝑁)↑2) ∥ (𝑀↑2) ∧ ((𝑀 gcd 𝑁)↑2) ∥ (𝑁↑2))) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
3315, 18, 10, 26, 31, 32syl32anc 1326 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
34 nncn 10905 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
3534adantr 480 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
369nncnd 10913 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℂ)
379nnne0d 10942 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ≠ 0)
3835, 36, 37sqdivd 12883 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 / (𝑀 gcd 𝑁))↑2) = ((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)))
39 nncn 10905 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4039adantl 481 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
4140, 36, 37sqdivd 12883 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 / (𝑀 gcd 𝑁))↑2) = ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2)))
4238, 41oveq12d 6567 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = (((𝑀↑2) / ((𝑀 gcd 𝑁)↑2)) gcd ((𝑁↑2) / ((𝑀 gcd 𝑁)↑2))))
43 gcddiv 15106 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 gcd 𝑁) ∈ ℕ) ∧ ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))))
4423, 28, 9, 20, 43syl31anc 1321 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))))
4536, 37dividd 10678 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) / (𝑀 gcd 𝑁)) = 1)
4644, 45eqtr3d 2646 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1)
47 dvdsval2 14824 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 gcd 𝑁) ≠ 0 ∧ 𝑀 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ))
4822, 37, 23, 47syl3anc 1318 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ↔ (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ))
4921, 48mpbid 221 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ)
50 nnre 10904 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5150adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
529nnred 10912 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℝ)
53 nngt0 10926 . . . . . . . . 9 (𝑀 ∈ ℕ → 0 < 𝑀)
5453adantr 480 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑀)
559nngt0d 10941 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑀 gcd 𝑁))
5651, 52, 54, 55divgt0d 10838 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑀 / (𝑀 gcd 𝑁)))
57 elnnz 11264 . . . . . . 7 ((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ↔ ((𝑀 / (𝑀 gcd 𝑁)) ∈ ℤ ∧ 0 < (𝑀 / (𝑀 gcd 𝑁))))
5849, 56, 57sylanbrc 695 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ)
59 dvdsval2 14824 . . . . . . . . 9 (((𝑀 gcd 𝑁) ∈ ℤ ∧ (𝑀 gcd 𝑁) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ))
6022, 37, 28, 59syl3anc 1318 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ))
6127, 60mpbid 221 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ)
62 nnre 10904 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
6362adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
64 nngt0 10926 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
6564adantl 481 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
6663, 52, 65, 55divgt0d 10838 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 0 < (𝑁 / (𝑀 gcd 𝑁)))
67 elnnz 11264 . . . . . . 7 ((𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ ↔ ((𝑁 / (𝑀 gcd 𝑁)) ∈ ℤ ∧ 0 < (𝑁 / (𝑀 gcd 𝑁))))
6861, 66, 67sylanbrc 695 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ)
69 2nn 11062 . . . . . . 7 2 ∈ ℕ
70 rppwr 15115 . . . . . . 7 (((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ 2 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
7169, 70mp3an3 1405 . . . . . 6 (((𝑀 / (𝑀 gcd 𝑁)) ∈ ℕ ∧ (𝑁 / (𝑀 gcd 𝑁)) ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
7258, 68, 71syl2anc 691 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁)) gcd (𝑁 / (𝑀 gcd 𝑁))) = 1 → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1))
7346, 72mpd 15 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 / (𝑀 gcd 𝑁))↑2) gcd ((𝑁 / (𝑀 gcd 𝑁))↑2)) = 1)
7433, 42, 733eqtr2d 2650 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1)
7514, 17anim12i 588 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ))
7613nnne0d 10942 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑀↑2) ≠ 0)
7776neneqd 2787 . . . . . . . 8 (𝑀 ∈ ℕ → ¬ (𝑀↑2) = 0)
7877intnanrd 954 . . . . . . 7 (𝑀 ∈ ℕ → ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0))
7978adantr 480 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0))
80 gcdn0cl 15062 . . . . . 6 ((((𝑀↑2) ∈ ℤ ∧ (𝑁↑2) ∈ ℤ) ∧ ¬ ((𝑀↑2) = 0 ∧ (𝑁↑2) = 0)) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℕ)
8175, 79, 80syl2anc 691 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℕ)
8281nncnd 10913 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ)
8310nnne0d 10942 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) ≠ 0)
84 ax-1cn 9873 . . . . 5 1 ∈ ℂ
85 divmul 10567 . . . . 5 ((((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ ∧ 1 ∈ ℂ ∧ (((𝑀 gcd 𝑁)↑2) ∈ ℂ ∧ ((𝑀 gcd 𝑁)↑2) ≠ 0)) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8684, 85mp3an2 1404 . . . 4 ((((𝑀↑2) gcd (𝑁↑2)) ∈ ℂ ∧ (((𝑀 gcd 𝑁)↑2) ∈ ℂ ∧ ((𝑀 gcd 𝑁)↑2) ≠ 0)) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8782, 11, 83, 86syl12anc 1316 . . 3 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((𝑀↑2) gcd (𝑁↑2)) / ((𝑀 gcd 𝑁)↑2)) = 1 ↔ (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2))))
8874, 87mpbid 221 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝑀 gcd 𝑁)↑2) · 1) = ((𝑀↑2) gcd (𝑁↑2)))
8912, 88eqtr3d 2646 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   < clt 9953   / cdiv 10563  cn 10897  2c2 10947  cz 11254  cexp 12722  cdvds 14821   gcd cgcd 15054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055
This theorem is referenced by:  dvdssqlem  15117  nn0gcdsq  15298  pythagtriplem3  15361
  Copyright terms: Public domain W3C validator