Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimgft Structured version   Visualization version   GIF version

Theorem spcimgft 3257
 Description: A closed version of spcimgf 3259. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgft.1 𝑥𝜓
spcimgft.2 𝑥𝐴
Assertion
Ref Expression
spcimgft (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))

Proof of Theorem spcimgft
StepHypRef Expression
1 elex 3185 . 2 (𝐴𝐵𝐴 ∈ V)
2 spcimgft.2 . . . . 5 𝑥𝐴
32issetf 3181 . . . 4 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 exim 1751 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝜑𝜓)))
53, 4syl5bi 231 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ V → ∃𝑥(𝜑𝜓)))
6 spcimgft.1 . . . 4 𝑥𝜓
7619.36 2085 . . 3 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
85, 7syl6ib 240 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ V → (∀𝑥𝜑𝜓)))
91, 8syl5 33 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝜑𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1473   = wceq 1475  ∃wex 1695  Ⅎwnf 1699   ∈ wcel 1977  Ⅎwnfc 2738  Vcvv 3173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175 This theorem is referenced by:  spcgft  3258  spcimgf  3259  spcimdv  3263  ss2iundf  36970  spcdvw  42224
 Copyright terms: Public domain W3C validator