Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimegf Structured version   Visualization version   GIF version

Theorem spcimegf 3260
 Description: Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgf.1 𝑥𝐴
spcimgf.2 𝑥𝜓
spcimegf.3 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
spcimegf (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))

Proof of Theorem spcimegf
StepHypRef Expression
1 spcimgf.1 . . . 4 𝑥𝐴
2 spcimgf.2 . . . . 5 𝑥𝜓
32nfn 1768 . . . 4 𝑥 ¬ 𝜓
4 spcimegf.3 . . . . 5 (𝑥 = 𝐴 → (𝜓𝜑))
54con3d 147 . . . 4 (𝑥 = 𝐴 → (¬ 𝜑 → ¬ 𝜓))
61, 3, 5spcimgf 3259 . . 3 (𝐴𝑉 → (∀𝑥 ¬ 𝜑 → ¬ 𝜓))
76con2d 128 . 2 (𝐴𝑉 → (𝜓 → ¬ ∀𝑥 ¬ 𝜑))
8 df-ex 1696 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
97, 8syl6ibr 241 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1473   = wceq 1475  ∃wex 1695  Ⅎwnf 1699   ∈ wcel 1977  Ⅎwnfc 2738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175 This theorem is referenced by:  bj-xnex  32245
 Copyright terms: Public domain W3C validator