MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc3gv Structured version   Visualization version   GIF version

Theorem spc3gv 3271
Description: Specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
Hypothesis
Ref Expression
spc3egv.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
Assertion
Ref Expression
spc3gv ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥𝑦𝑧𝜑𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem spc3gv
StepHypRef Expression
1 spc3egv.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
21notbid 307 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (¬ 𝜑 ↔ ¬ 𝜓))
32spc3egv 3270 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (¬ 𝜓 → ∃𝑥𝑦𝑧 ¬ 𝜑))
4 exnal 1744 . . . . . . 7 (∃𝑧 ¬ 𝜑 ↔ ¬ ∀𝑧𝜑)
54exbii 1764 . . . . . 6 (∃𝑦𝑧 ¬ 𝜑 ↔ ∃𝑦 ¬ ∀𝑧𝜑)
6 exnal 1744 . . . . . 6 (∃𝑦 ¬ ∀𝑧𝜑 ↔ ¬ ∀𝑦𝑧𝜑)
75, 6bitri 263 . . . . 5 (∃𝑦𝑧 ¬ 𝜑 ↔ ¬ ∀𝑦𝑧𝜑)
87exbii 1764 . . . 4 (∃𝑥𝑦𝑧 ¬ 𝜑 ↔ ∃𝑥 ¬ ∀𝑦𝑧𝜑)
9 exnal 1744 . . . 4 (∃𝑥 ¬ ∀𝑦𝑧𝜑 ↔ ¬ ∀𝑥𝑦𝑧𝜑)
108, 9bitr2i 264 . . 3 (¬ ∀𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧 ¬ 𝜑)
113, 10syl6ibr 241 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (¬ 𝜓 → ¬ ∀𝑥𝑦𝑧𝜑))
1211con4d 113 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥𝑦𝑧𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  w3a 1031  wal 1473   = wceq 1475  wex 1695  wcel 1977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-v 3175
This theorem is referenced by:  funopg  5836  pslem  17029  dirtr  17059  mclsax  30720  fununiq  30913
  Copyright terms: Public domain W3C validator