Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spc3gv | Structured version Visualization version GIF version |
Description: Specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
Ref | Expression |
---|---|
spc3egv.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spc3gv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spc3egv.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 307 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | spc3egv 3270 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (¬ 𝜓 → ∃𝑥∃𝑦∃𝑧 ¬ 𝜑)) |
4 | exnal 1744 | . . . . . . 7 ⊢ (∃𝑧 ¬ 𝜑 ↔ ¬ ∀𝑧𝜑) | |
5 | 4 | exbii 1764 | . . . . . 6 ⊢ (∃𝑦∃𝑧 ¬ 𝜑 ↔ ∃𝑦 ¬ ∀𝑧𝜑) |
6 | exnal 1744 | . . . . . 6 ⊢ (∃𝑦 ¬ ∀𝑧𝜑 ↔ ¬ ∀𝑦∀𝑧𝜑) | |
7 | 5, 6 | bitri 263 | . . . . 5 ⊢ (∃𝑦∃𝑧 ¬ 𝜑 ↔ ¬ ∀𝑦∀𝑧𝜑) |
8 | 7 | exbii 1764 | . . . 4 ⊢ (∃𝑥∃𝑦∃𝑧 ¬ 𝜑 ↔ ∃𝑥 ¬ ∀𝑦∀𝑧𝜑) |
9 | exnal 1744 | . . . 4 ⊢ (∃𝑥 ¬ ∀𝑦∀𝑧𝜑 ↔ ¬ ∀𝑥∀𝑦∀𝑧𝜑) | |
10 | 8, 9 | bitr2i 264 | . . 3 ⊢ (¬ ∀𝑥∀𝑦∀𝑧𝜑 ↔ ∃𝑥∃𝑦∃𝑧 ¬ 𝜑) |
11 | 3, 10 | syl6ibr 241 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (¬ 𝜓 → ¬ ∀𝑥∀𝑦∀𝑧𝜑)) |
12 | 11 | con4d 113 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (∀𝑥∀𝑦∀𝑧𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ w3a 1031 ∀wal 1473 = wceq 1475 ∃wex 1695 ∈ wcel 1977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-v 3175 |
This theorem is referenced by: funopg 5836 pslem 17029 dirtr 17059 mclsax 30720 fununiq 30913 |
Copyright terms: Public domain | W3C validator |