Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spc3egv Structured version   Visualization version   GIF version

Theorem spc3egv 3270
 Description: Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
Hypothesis
Ref Expression
spc3egv.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
Assertion
Ref Expression
spc3egv ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → ∃𝑥𝑦𝑧𝜑))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem spc3egv
StepHypRef Expression
1 elisset 3188 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 elisset 3188 . . . 4 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
3 elisset 3188 . . . 4 (𝐶𝑋 → ∃𝑧 𝑧 = 𝐶)
41, 2, 33anim123i 1240 . . 3 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶))
5 eeeanv 2171 . . 3 (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵 ∧ ∃𝑧 𝑧 = 𝐶))
64, 5sylibr 223 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶))
7 spc3egv.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
87biimprcd 239 . . . 4 (𝜓 → ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → 𝜑))
98eximdv 1833 . . 3 (𝜓 → (∃𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ∃𝑧𝜑))
1092eximdv 1835 . 2 (𝜓 → (∃𝑥𝑦𝑧(𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → ∃𝑥𝑦𝑧𝜑))
116, 10syl5com 31 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → ∃𝑥𝑦𝑧𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-v 3175 This theorem is referenced by:  spc3gv  3271  dihjatcclem4  35728
 Copyright terms: Public domain W3C validator