MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sorpssi Structured version   Visualization version   GIF version

Theorem sorpssi 6841
Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
sorpssi (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))

Proof of Theorem sorpssi
StepHypRef Expression
1 solin 4982 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 [] 𝐶𝐵 = 𝐶𝐶 [] 𝐵))
2 elex 3185 . . . . . 6 (𝐶𝐴𝐶 ∈ V)
32ad2antll 761 . . . . 5 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐶 ∈ V)
4 brrpssg 6837 . . . . 5 (𝐶 ∈ V → (𝐵 [] 𝐶𝐵𝐶))
53, 4syl 17 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 [] 𝐶𝐵𝐶))
6 biidd 251 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶𝐵 = 𝐶))
7 elex 3185 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
87ad2antrl 760 . . . . 5 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → 𝐵 ∈ V)
9 brrpssg 6837 . . . . 5 (𝐵 ∈ V → (𝐶 [] 𝐵𝐶𝐵))
108, 9syl 17 . . . 4 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐶 [] 𝐵𝐶𝐵))
115, 6, 103orbi123d 1390 . . 3 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵 [] 𝐶𝐵 = 𝐶𝐶 [] 𝐵) ↔ (𝐵𝐶𝐵 = 𝐶𝐶𝐵)))
121, 11mpbid 221 . 2 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐵 = 𝐶𝐶𝐵))
13 sspsstri 3671 . 2 ((𝐵𝐶𝐶𝐵) ↔ (𝐵𝐶𝐵 = 𝐶𝐶𝐵))
1412, 13sylibr 223 1 (( [] Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3o 1030   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  wpss 3541   class class class wbr 4583   Or wor 4958   [] crpss 6834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-so 4960  df-xp 5044  df-rel 5045  df-rpss 6835
This theorem is referenced by:  sorpssun  6842  sorpssin  6843  sorpssuni  6844  sorpssint  6845  sorpsscmpl  6846  enfin2i  9026  fin1a2lem9  9113  fin1a2lem10  9114  fin1a2lem11  9115  fin1a2lem13  9117
  Copyright terms: Public domain W3C validator