MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnen2o Structured version   Visualization version   GIF version

Theorem snnen2o 8034
Description: A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.)
Assertion
Ref Expression
snnen2o ¬ {𝐴} ≈ 2𝑜

Proof of Theorem snnen2o
StepHypRef Expression
1 1onn 7606 . . . 4 1𝑜 ∈ ω
2 php5 8033 . . . 4 (1𝑜 ∈ ω → ¬ 1𝑜 ≈ suc 1𝑜)
31, 2ax-mp 5 . . 3 ¬ 1𝑜 ≈ suc 1𝑜
4 ensn1g 7907 . . 3 (𝐴 ∈ V → {𝐴} ≈ 1𝑜)
5 df-2o 7448 . . . . . 6 2𝑜 = suc 1𝑜
65eqcomi 2619 . . . . 5 suc 1𝑜 = 2𝑜
76breq2i 4591 . . . 4 (1𝑜 ≈ suc 1𝑜 ↔ 1𝑜 ≈ 2𝑜)
8 ensymb 7890 . . . . . 6 ({𝐴} ≈ 1𝑜 ↔ 1𝑜 ≈ {𝐴})
9 entr 7894 . . . . . . 7 ((1𝑜 ≈ {𝐴} ∧ {𝐴} ≈ 2𝑜) → 1𝑜 ≈ 2𝑜)
109ex 449 . . . . . 6 (1𝑜 ≈ {𝐴} → ({𝐴} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜))
118, 10sylbi 206 . . . . 5 ({𝐴} ≈ 1𝑜 → ({𝐴} ≈ 2𝑜 → 1𝑜 ≈ 2𝑜))
1211con3rr3 150 . . . 4 (¬ 1𝑜 ≈ 2𝑜 → ({𝐴} ≈ 1𝑜 → ¬ {𝐴} ≈ 2𝑜))
137, 12sylnbi 319 . . 3 (¬ 1𝑜 ≈ suc 1𝑜 → ({𝐴} ≈ 1𝑜 → ¬ {𝐴} ≈ 2𝑜))
143, 4, 13mpsyl 66 . 2 (𝐴 ∈ V → ¬ {𝐴} ≈ 2𝑜)
15 2on0 7456 . . . 4 2𝑜 ≠ ∅
16 ensymb 7890 . . . . 5 (∅ ≈ 2𝑜 ↔ 2𝑜 ≈ ∅)
17 en0 7905 . . . . 5 (2𝑜 ≈ ∅ ↔ 2𝑜 = ∅)
1816, 17bitri 263 . . . 4 (∅ ≈ 2𝑜 ↔ 2𝑜 = ∅)
1915, 18nemtbir 2877 . . 3 ¬ ∅ ≈ 2𝑜
20 snprc 4197 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
2120biimpi 205 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
2221breq1d 4593 . . 3 𝐴 ∈ V → ({𝐴} ≈ 2𝑜 ↔ ∅ ≈ 2𝑜))
2319, 22mtbiri 316 . 2 𝐴 ∈ V → ¬ {𝐴} ≈ 2𝑜)
2414, 23pm2.61i 175 1 ¬ {𝐴} ≈ 2𝑜
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874  {csn 4125   class class class wbr 4583  suc csuc 5642  ωcom 6957  1𝑜c1o 7440  2𝑜c2o 7441  cen 7838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-2o 7448  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844
This theorem is referenced by:  pmtrsn  17762
  Copyright terms: Public domain W3C validator