Proof of Theorem snmlval
Step | Hyp | Ref
| Expression |
1 | | oveq1 6556 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑟 − 1) = (𝑅 − 1)) |
2 | 1 | oveq2d 6565 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (0...(𝑟 − 1)) = (0...(𝑅 − 1))) |
3 | | oveq1 6556 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑅 → (𝑟↑𝑘) = (𝑅↑𝑘)) |
4 | 3 | oveq2d 6565 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑅 → (𝑥 · (𝑟↑𝑘)) = (𝑥 · (𝑅↑𝑘))) |
5 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) |
6 | 4, 5 | oveq12d 6567 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑅 → ((𝑥 · (𝑟↑𝑘)) mod 𝑟) = ((𝑥 · (𝑅↑𝑘)) mod 𝑅)) |
7 | 6 | fveq2d 6107 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑅 → (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅))) |
8 | 7 | eqeq1d 2612 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → ((⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏 ↔ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏)) |
9 | 8 | rabbidv 3164 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏} = {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) |
10 | 9 | fveq2d 6107 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) = (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏})) |
11 | 10 | oveq1d 6564 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛) = ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) |
12 | 11 | mpteq2dv 4673 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛))) |
13 | | oveq2 6557 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (1 / 𝑟) = (1 / 𝑅)) |
14 | 12, 13 | breq12d 4596 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → ((𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟) ↔ (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |
15 | 2, 14 | raleqbidv 3129 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟) ↔ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |
16 | 15 | rabbidv 3164 |
. . . . . 6
⊢ (𝑟 = 𝑅 → {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)} = {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)}) |
17 | | snml.s |
. . . . . 6
⊢ 𝑆 = (𝑟 ∈ (ℤ≥‘2)
↦ {𝑥 ∈ ℝ
∣ ∀𝑏 ∈
(0...(𝑟 − 1))(𝑛 ∈ ℕ ↦
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑟↑𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)}) |
18 | | reex 9906 |
. . . . . . 7
⊢ ℝ
∈ V |
19 | 18 | rabex 4740 |
. . . . . 6
⊢ {𝑥 ∈ ℝ ∣
∀𝑏 ∈
(0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝑥 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)} ∈ V |
20 | 16, 17, 19 | fvmpt 6191 |
. . . . 5
⊢ (𝑅 ∈
(ℤ≥‘2) → (𝑆‘𝑅) = {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)}) |
21 | 20 | eleq2d 2673 |
. . . 4
⊢ (𝑅 ∈
(ℤ≥‘2) → (𝐴 ∈ (𝑆‘𝑅) ↔ 𝐴 ∈ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)})) |
22 | | oveq1 6556 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → (𝑥 · (𝑅↑𝑘)) = (𝐴 · (𝑅↑𝑘))) |
23 | 22 | oveq1d 6564 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → ((𝑥 · (𝑅↑𝑘)) mod 𝑅) = ((𝐴 · (𝑅↑𝑘)) mod 𝑅)) |
24 | 23 | fveq2d 6107 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅))) |
25 | 24 | eqeq1d 2612 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → ((⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏 ↔ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏)) |
26 | 25 | rabbidv 3164 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏} = {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) |
27 | 26 | fveq2d 6107 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) = (#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏})) |
28 | 27 | oveq1d 6564 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛) = ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) |
29 | 28 | mpteq2dv 4673 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛))) |
30 | 29 | breq1d 4593 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅) ↔ (𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |
31 | 30 | ralbidv 2969 |
. . . . 5
⊢ (𝑥 = 𝐴 → (∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅) ↔ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |
32 | 31 | elrab 3331 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)} ↔ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |
33 | 21, 32 | syl6bb 275 |
. . 3
⊢ (𝑅 ∈
(ℤ≥‘2) → (𝐴 ∈ (𝑆‘𝑅) ↔ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))) |
34 | 33 | pm5.32i 667 |
. 2
⊢ ((𝑅 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ (𝑆‘𝑅)) ↔ (𝑅 ∈ (ℤ≥‘2)
∧ (𝐴 ∈ ℝ
∧ ∀𝑏 ∈
(0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))) |
35 | 17 | dmmptss 5548 |
. . . 4
⊢ dom 𝑆 ⊆
(ℤ≥‘2) |
36 | | elfvdm 6130 |
. . . 4
⊢ (𝐴 ∈ (𝑆‘𝑅) → 𝑅 ∈ dom 𝑆) |
37 | 35, 36 | sseldi 3566 |
. . 3
⊢ (𝐴 ∈ (𝑆‘𝑅) → 𝑅 ∈
(ℤ≥‘2)) |
38 | 37 | pm4.71ri 663 |
. 2
⊢ (𝐴 ∈ (𝑆‘𝑅) ↔ (𝑅 ∈ (ℤ≥‘2)
∧ 𝐴 ∈ (𝑆‘𝑅))) |
39 | | 3anass 1035 |
. 2
⊢ ((𝑅 ∈
(ℤ≥‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((#‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)) ↔ (𝑅 ∈ (ℤ≥‘2)
∧ (𝐴 ∈ ℝ
∧ ∀𝑏 ∈
(0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))) |
40 | 34, 38, 39 | 3bitr4i 291 |
1
⊢ (𝐴 ∈ (𝑆‘𝑅) ↔ (𝑅 ∈ (ℤ≥‘2)
∧ 𝐴 ∈ ℝ
∧ ∀𝑏 ∈
(0...(𝑅 − 1))(𝑛 ∈ ℕ ↦
((#‘{𝑘 ∈
(1...𝑛) ∣
(⌊‘((𝐴 ·
(𝑅↑𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))) |