MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sniota Structured version   Visualization version   GIF version

Theorem sniota 5795
Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
sniota (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})

Proof of Theorem sniota
StepHypRef Expression
1 nfeu1 2468 . 2 𝑥∃!𝑥𝜑
2 nfab1 2753 . 2 𝑥{𝑥𝜑}
3 nfiota1 5770 . . 3 𝑥(℩𝑥𝜑)
43nfsn 4189 . 2 𝑥{(℩𝑥𝜑)}
5 iota1 5782 . . . 4 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
6 eqcom 2617 . . . 4 ((℩𝑥𝜑) = 𝑥𝑥 = (℩𝑥𝜑))
75, 6syl6bb 275 . . 3 (∃!𝑥𝜑 → (𝜑𝑥 = (℩𝑥𝜑)))
8 abid 2598 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 velsn 4141 . . 3 (𝑥 ∈ {(℩𝑥𝜑)} ↔ 𝑥 = (℩𝑥𝜑))
107, 8, 93bitr4g 302 . 2 (∃!𝑥𝜑 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑥 ∈ {(℩𝑥𝜑)}))
111, 2, 4, 10eqrd 3586 1 (∃!𝑥𝜑 → {𝑥𝜑} = {(℩𝑥𝜑)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  ∃!weu 2458  {cab 2596  {csn 4125  cio 5766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-sbc 3403  df-un 3545  df-in 3547  df-ss 3554  df-sn 4126  df-pr 4128  df-uni 4373  df-iota 5768
This theorem is referenced by:  snriota  6540
  Copyright terms: Public domain W3C validator