MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snidb Structured version   Visualization version   GIF version

Theorem snidb 4154
Description: A class is a set iff it is a member of its singleton. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
snidb (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})

Proof of Theorem snidb
StepHypRef Expression
1 snidg 4153 . 2 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
2 elex 3185 . 2 (𝐴 ∈ {𝐴} → 𝐴 ∈ V)
31, 2impbii 198 1 (𝐴 ∈ V ↔ 𝐴 ∈ {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 195  wcel 1977  Vcvv 3173  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sn 4126
This theorem is referenced by:  snid  4155  dffv2  6181
  Copyright terms: Public domain W3C validator