Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelmap Structured version   Visualization version   GIF version

Theorem snelmap 38280
Description: Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
snelmap.a (𝜑𝐴𝑉)
snelmap.b (𝜑𝐵𝑊)
snelmap.n (𝜑𝐴 ≠ ∅)
snelmap.e (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵𝑚 𝐴))
Assertion
Ref Expression
snelmap (𝜑𝑥𝐵)

Proof of Theorem snelmap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 snelmap.n . . 3 (𝜑𝐴 ≠ ∅)
2 n0 3890 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
31, 2sylib 207 . 2 (𝜑 → ∃𝑦 𝑦𝐴)
4 vex 3176 . . . . . . . 8 𝑥 ∈ V
54fvconst2 6374 . . . . . . 7 (𝑦𝐴 → ((𝐴 × {𝑥})‘𝑦) = 𝑥)
65eqcomd 2616 . . . . . 6 (𝑦𝐴𝑥 = ((𝐴 × {𝑥})‘𝑦))
76adantl 481 . . . . 5 ((𝜑𝑦𝐴) → 𝑥 = ((𝐴 × {𝑥})‘𝑦))
8 snelmap.e . . . . . . . 8 (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵𝑚 𝐴))
9 snelmap.b . . . . . . . . 9 (𝜑𝐵𝑊)
10 snelmap.a . . . . . . . . 9 (𝜑𝐴𝑉)
11 elmapg 7757 . . . . . . . . 9 ((𝐵𝑊𝐴𝑉) → ((𝐴 × {𝑥}) ∈ (𝐵𝑚 𝐴) ↔ (𝐴 × {𝑥}):𝐴𝐵))
129, 10, 11syl2anc 691 . . . . . . . 8 (𝜑 → ((𝐴 × {𝑥}) ∈ (𝐵𝑚 𝐴) ↔ (𝐴 × {𝑥}):𝐴𝐵))
138, 12mpbid 221 . . . . . . 7 (𝜑 → (𝐴 × {𝑥}):𝐴𝐵)
1413adantr 480 . . . . . 6 ((𝜑𝑦𝐴) → (𝐴 × {𝑥}):𝐴𝐵)
15 simpr 476 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦𝐴)
1614, 15ffvelrnd 6268 . . . . 5 ((𝜑𝑦𝐴) → ((𝐴 × {𝑥})‘𝑦) ∈ 𝐵)
177, 16eqeltrd 2688 . . . 4 ((𝜑𝑦𝐴) → 𝑥𝐵)
1817ex 449 . . 3 (𝜑 → (𝑦𝐴𝑥𝐵))
1918exlimdv 1848 . 2 (𝜑 → (∃𝑦 𝑦𝐴𝑥𝐵))
203, 19mpd 15 1 (𝜑𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  c0 3874  {csn 4125   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746
This theorem is referenced by:  mapssbi  38400
  Copyright terms: Public domain W3C validator