MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smuval Structured version   Visualization version   GIF version

Theorem smuval 15041
Description: Define the addition of two bit sequences, using df-had 1524 and df-cad 1537 bit operations. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
smuval (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smuval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 smuval.a . . . 4 (𝜑𝐴 ⊆ ℕ0)
2 smuval.b . . . 4 (𝜑𝐵 ⊆ ℕ0)
3 smuval.p . . . 4 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
41, 2, 3smufval 15037 . . 3 (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
54eleq2d 2673 . 2 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))}))
6 smuval.n . . 3 (𝜑𝑁 ∈ ℕ0)
7 id 22 . . . . 5 (𝑘 = 𝑁𝑘 = 𝑁)
8 oveq1 6556 . . . . . 6 (𝑘 = 𝑁 → (𝑘 + 1) = (𝑁 + 1))
98fveq2d 6107 . . . . 5 (𝑘 = 𝑁 → (𝑃‘(𝑘 + 1)) = (𝑃‘(𝑁 + 1)))
107, 9eleq12d 2682 . . . 4 (𝑘 = 𝑁 → (𝑘 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
1110elrab3 3332 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))} ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
126, 11syl 17 . 2 (𝜑 → (𝑁 ∈ {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))} ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
135, 12bitrd 267 1 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {crab 2900  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108  cmpt 4643  cfv 5804  (class class class)co 6549  cmpt2 6551  0cc0 9815  1c1 9816   + caddc 9818  cmin 10145  0cn0 11169  seqcseq 12663   sadd csad 14980   smul csmu 14981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-i2m1 9883  ax-1ne0 9884  ax-rrecex 9887  ax-cnre 9888
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-nn 10898  df-n0 11170  df-seq 12664  df-smu 15036
This theorem is referenced by:  smuval2  15042  smupvallem  15043  smu01lem  15045
  Copyright terms: Public domain W3C validator