MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupvallem Structured version   Visualization version   GIF version

Theorem smupvallem 15043
Description: If 𝐴 only has elements less than 𝑁, then all elements of the partial sum sequence past 𝑁 already equal the final value. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
smupvallem.a (𝜑𝐴 ⊆ (0..^𝑁))
smupvallem.m (𝜑𝑀 ∈ (ℤ𝑁))
Assertion
Ref Expression
smupvallem (𝜑 → (𝑃𝑀) = (𝐴 smul 𝐵))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑀(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smupvallem
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
2 smuval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
3 smuval.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
41, 2, 3smupf 15038 . . . . . 6 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
5 smuval.n . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
6 smupvallem.m . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝑁))
7 eluznn0 11633 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
85, 6, 7syl2anc 691 . . . . . 6 (𝜑𝑀 ∈ ℕ0)
94, 8ffvelrnd 6268 . . . . 5 (𝜑 → (𝑃𝑀) ∈ 𝒫 ℕ0)
109elpwid 4118 . . . 4 (𝜑 → (𝑃𝑀) ⊆ ℕ0)
1110sseld 3567 . . 3 (𝜑 → (𝑘 ∈ (𝑃𝑀) → 𝑘 ∈ ℕ0))
121, 2, 3smufval 15037 . . . . 5 (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
13 ssrab2 3650 . . . . 5 {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))} ⊆ ℕ0
1412, 13syl6eqss 3618 . . . 4 (𝜑 → (𝐴 smul 𝐵) ⊆ ℕ0)
1514sseld 3567 . . 3 (𝜑 → (𝑘 ∈ (𝐴 smul 𝐵) → 𝑘 ∈ ℕ0))
161ad2antrr 758 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝐴 ⊆ ℕ0)
172ad2antrr 758 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝐵 ⊆ ℕ0)
18 simplr 788 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑘 ∈ ℕ0)
196adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ (ℤ𝑁))
20 uztrn 11580 . . . . . . . 8 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑀 ∈ (ℤ‘(𝑘 + 1)))
2119, 20sylan 487 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → 𝑀 ∈ (ℤ‘(𝑘 + 1)))
2216, 17, 3, 18, 21smuval2 15042 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃𝑀)))
2322bicomd 212 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑁 ∈ (ℤ‘(𝑘 + 1))) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
246ad2antrr 758 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
25 simpll 786 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝜑)
26 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
2726eqeq1d 2612 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑁) = (𝑃𝑁)))
2827imbi2d 329 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑁) = (𝑃𝑁))))
29 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
3029eqeq1d 2612 . . . . . . . . . . 11 (𝑥 = 𝑘 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑘) = (𝑃𝑁)))
3130imbi2d 329 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑘) = (𝑃𝑁))))
32 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
3332eqeq1d 2612 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
3433imbi2d 329 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
35 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑀 → (𝑃𝑥) = (𝑃𝑀))
3635eqeq1d 2612 . . . . . . . . . . 11 (𝑥 = 𝑀 → ((𝑃𝑥) = (𝑃𝑁) ↔ (𝑃𝑀) = (𝑃𝑁)))
3736imbi2d 329 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝜑 → (𝑃𝑥) = (𝑃𝑁)) ↔ (𝜑 → (𝑃𝑀) = (𝑃𝑁))))
38 eqidd 2611 . . . . . . . . . . 11 (𝜑 → (𝑃𝑁) = (𝑃𝑁))
3938a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → (𝜑 → (𝑃𝑁) = (𝑃𝑁)))
401adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ⊆ ℕ0)
412adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐵 ⊆ ℕ0)
42 eluznn0 11633 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
435, 42sylan 487 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
4440, 41, 3, 43smupp1 15040 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
45 eluzle 11576 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (ℤ𝑁) → 𝑁𝑘)
4645adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑁𝑘)
475nn0red 11229 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑁 ∈ ℝ)
4847adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
4943nn0red 11229 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℝ)
5048, 49lenltd 10062 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑁𝑘 ↔ ¬ 𝑘 < 𝑁))
5146, 50mpbid 221 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (ℤ𝑁)) → ¬ 𝑘 < 𝑁)
52 smupvallem.a . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝐴 ⊆ (0..^𝑁))
5352adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝐴 ⊆ (0..^𝑁))
5453sseld 3567 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝐴𝑘 ∈ (0..^𝑁)))
55 elfzolt2 12348 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁)
5654, 55syl6 34 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑘𝐴𝑘 < 𝑁))
5756adantrd 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵) → 𝑘 < 𝑁))
5851, 57mtod 188 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
5958ralrimivw 2950 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → ∀𝑛 ∈ ℕ0 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
60 rabeq0 3911 . . . . . . . . . . . . . . . . 17 ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ ℕ0 ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
6159, 60sylibr 223 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅)
6261oveq2d 6565 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((𝑃𝑘) sadd ∅))
634adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑃:ℕ0⟶𝒫 ℕ0)
6463, 43ffvelrnd 6268 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃𝑘) ∈ 𝒫 ℕ0)
6564elpwid 4118 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃𝑘) ⊆ ℕ0)
66 sadid1 15028 . . . . . . . . . . . . . . . 16 ((𝑃𝑘) ⊆ ℕ0 → ((𝑃𝑘) sadd ∅) = (𝑃𝑘))
6765, 66syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) sadd ∅) = (𝑃𝑘))
6844, 62, 673eqtrd 2648 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = (𝑃𝑘))
6968eqeq1d 2612 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃‘(𝑘 + 1)) = (𝑃𝑁) ↔ (𝑃𝑘) = (𝑃𝑁)))
7069biimprd 237 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑃𝑘) = (𝑃𝑁) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
7170expcom 450 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑁) → (𝜑 → ((𝑃𝑘) = (𝑃𝑁) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
7271a2d 29 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑁) → ((𝜑 → (𝑃𝑘) = (𝑃𝑁)) → (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))))
7328, 31, 34, 37, 39, 72uzind4 11622 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → (𝜑 → (𝑃𝑀) = (𝑃𝑁)))
7424, 25, 73sylc 63 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃𝑀) = (𝑃𝑁))
75 simpr 476 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 + 1) ∈ (ℤ𝑁))
7628, 31, 34, 34, 39, 72uzind4 11622 . . . . . . . . 9 ((𝑘 + 1) ∈ (ℤ𝑁) → (𝜑 → (𝑃‘(𝑘 + 1)) = (𝑃𝑁)))
7775, 25, 76sylc 63 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃‘(𝑘 + 1)) = (𝑃𝑁))
7874, 77eqtr4d 2647 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑃𝑀) = (𝑃‘(𝑘 + 1)))
7978eleq2d 2673 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
801ad2antrr 758 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝐴 ⊆ ℕ0)
812ad2antrr 758 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝐵 ⊆ ℕ0)
82 simplr 788 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
8380, 81, 3, 82smuval 15041 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
8479, 83bitr4d 270 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ (𝑘 + 1) ∈ (ℤ𝑁)) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
85 simpr 476 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
8685nn0zd 11356 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
8786peano2zd 11361 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
885nn0zd 11356 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
8988adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → 𝑁 ∈ ℤ)
90 uztric 11585 . . . . . 6 (((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ∨ (𝑘 + 1) ∈ (ℤ𝑁)))
9187, 89, 90syl2anc 691 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑁 ∈ (ℤ‘(𝑘 + 1)) ∨ (𝑘 + 1) ∈ (ℤ𝑁)))
9223, 84, 91mpjaodan 823 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
9392ex 449 . . 3 (𝜑 → (𝑘 ∈ ℕ0 → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵))))
9411, 15, 93pm5.21ndd 368 . 2 (𝜑 → (𝑘 ∈ (𝑃𝑀) ↔ 𝑘 ∈ (𝐴 smul 𝐵)))
9594eqrdv 2608 1 (𝜑 → (𝑃𝑀) = (𝐴 smul 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  0cn0 11169  cz 11254  cuz 11563  ..^cfzo 12334  seqcseq 12663   sadd csad 14980   smul csmu 14981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-fal 1481  df-had 1524  df-cad 1537  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-bits 14982  df-sad 15011  df-smu 15036
This theorem is referenced by:  smupval  15048
  Copyright terms: Public domain W3C validator