Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem3 Structured version   Visualization version   GIF version

Theorem smflimlem3 39659
 Description: The limit of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem3.z 𝑍 = (ℤ𝑀)
smflimlem3.s (𝜑𝑆 ∈ SAlg)
smflimlem3.m ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
smflimlem3.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem3.a (𝜑𝐴 ∈ ℝ)
smflimlem3.p 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
smflimlem3.h 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
smflimlem3.i 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
smflimlem3.c ((𝜑𝑦 ∈ ran 𝑃) → (𝐶𝑦) ∈ 𝑦)
smflimlem3.x (𝜑𝑋 ∈ (𝐷𝐼))
smflimlem3.k (𝜑𝐾 ∈ ℕ)
smflimlem3.y (𝜑𝑌 ∈ ℝ+)
smflimlem3.l (𝜑 → (1 / 𝐾) < 𝑌)
Assertion
Ref Expression
smflimlem3 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌)))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑠,𝑥   𝐶,𝑘,𝑚,𝑠   𝑦,𝐶   𝑖,𝐹,𝑘,𝑚,𝑛,𝑥   𝐹,𝑠,𝑖   𝑖,𝐻,𝑘,𝑚,𝑛   𝑖,𝐾,𝑘,𝑚,𝑠,𝑥   𝑦,𝐾,𝑖   𝑚,𝑀   𝑃,𝑘,𝑚,𝑠   𝑦,𝑃   𝑆,𝑘,𝑚,𝑠   𝑖,𝑋,𝑘,𝑚,𝑥   𝑖,𝑍,𝑘,𝑚,𝑛,𝑥   𝜑,𝑖,𝑘,𝑚   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑠)   𝐴(𝑦,𝑖,𝑛)   𝐶(𝑥,𝑖,𝑛)   𝐷(𝑥,𝑦,𝑖,𝑘,𝑚,𝑛,𝑠)   𝑃(𝑥,𝑖,𝑛)   𝑆(𝑥,𝑦,𝑖,𝑛)   𝐹(𝑦)   𝐻(𝑥,𝑦,𝑠)   𝐼(𝑥,𝑦,𝑖,𝑘,𝑚,𝑛,𝑠)   𝐾(𝑛)   𝑀(𝑥,𝑦,𝑖,𝑘,𝑛,𝑠)   𝑋(𝑦,𝑛,𝑠)   𝑌(𝑥,𝑦,𝑖,𝑘,𝑚,𝑛,𝑠)   𝑍(𝑦,𝑠)

Proof of Theorem smflimlem3
StepHypRef Expression
1 smflimlem3.d . . . . . . . . 9 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
2 ssrab2 3650 . . . . . . . . 9 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } ⊆ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
31, 2eqsstri 3598 . . . . . . . 8 𝐷 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
4 inss1 3795 . . . . . . . . 9 (𝐷𝐼) ⊆ 𝐷
5 smflimlem3.x . . . . . . . . 9 (𝜑𝑋 ∈ (𝐷𝐼))
64, 5sseldi 3566 . . . . . . . 8 (𝜑𝑋𝐷)
73, 6sseldi 3566 . . . . . . 7 (𝜑𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
8 fveq2 6103 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → (𝐹𝑖) = (𝐹𝑚))
98dmeqd 5248 . . . . . . . . . . . 12 (𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚))
10 eqcom 2617 . . . . . . . . . . . . . 14 (𝑖 = 𝑚𝑚 = 𝑖)
1110imbi1i 338 . . . . . . . . . . . . 13 ((𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹𝑖) = dom (𝐹𝑚)))
12 eqcom 2617 . . . . . . . . . . . . . 14 (dom (𝐹𝑖) = dom (𝐹𝑚) ↔ dom (𝐹𝑚) = dom (𝐹𝑖))
1312imbi2i 325 . . . . . . . . . . . . 13 ((𝑚 = 𝑖 → dom (𝐹𝑖) = dom (𝐹𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖)))
1411, 13bitri 263 . . . . . . . . . . . 12 ((𝑖 = 𝑚 → dom (𝐹𝑖) = dom (𝐹𝑚)) ↔ (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖)))
159, 14mpbi 219 . . . . . . . . . . 11 (𝑚 = 𝑖 → dom (𝐹𝑚) = dom (𝐹𝑖))
1615cbviinv 4496 . . . . . . . . . 10 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖 ∈ (ℤ𝑛)dom (𝐹𝑖)
1716a1i 11 . . . . . . . . 9 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖 ∈ (ℤ𝑛)dom (𝐹𝑖))
1817iuneq2i 4475 . . . . . . . 8 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑖 ∈ (ℤ𝑛)dom (𝐹𝑖)
19 fveq2 6103 . . . . . . . . . 10 (𝑛 = 𝑚 → (ℤ𝑛) = (ℤ𝑚))
2019iineq1d 38295 . . . . . . . . 9 (𝑛 = 𝑚 𝑖 ∈ (ℤ𝑛)dom (𝐹𝑖) = 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
2120cbviunv 4495 . . . . . . . 8 𝑛𝑍 𝑖 ∈ (ℤ𝑛)dom (𝐹𝑖) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
2218, 21eqtri 2632 . . . . . . 7 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
237, 22syl6eleq 2698 . . . . . 6 (𝜑𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖))
24 smflimlem3.z . . . . . . . 8 𝑍 = (ℤ𝑀)
25 eqid 2610 . . . . . . . 8 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖)
2624, 25allbutfi 38557 . . . . . . 7 (𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) ↔ ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ dom (𝐹𝑖))
2726biimpi 205 . . . . . 6 (𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)dom (𝐹𝑖) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ dom (𝐹𝑖))
2823, 27syl 17 . . . . 5 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ dom (𝐹𝑖))
295elin2d 3765 . . . . . . . 8 (𝜑𝑋𝐼)
30 smflimlem3.i . . . . . . . . 9 𝐼 = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘)
31 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑚 = 𝑖 → (𝑚𝐻𝑘) = (𝑖𝐻𝑘))
3231cbviinv 4496 . . . . . . . . . . . . . 14 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑖 ∈ (ℤ𝑛)(𝑖𝐻𝑘)
3332a1i 11 . . . . . . . . . . . . 13 (𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑖 ∈ (ℤ𝑛)(𝑖𝐻𝑘))
3433iuneq2i 4475 . . . . . . . . . . . 12 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖𝐻𝑘)
3519iineq1d 38295 . . . . . . . . . . . . 13 (𝑛 = 𝑚 𝑖 ∈ (ℤ𝑛)(𝑖𝐻𝑘) = 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘))
3635cbviunv 4495 . . . . . . . . . . . 12 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖𝐻𝑘) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘)
3734, 36eqtri 2632 . . . . . . . . . . 11 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘)
3837a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘))
3938iineq2i 4476 . . . . . . . . 9 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚𝐻𝑘) = 𝑘 ∈ ℕ 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘)
4030, 39eqtri 2632 . . . . . . . 8 𝐼 = 𝑘 ∈ ℕ 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘)
4129, 40syl6eleq 2698 . . . . . . 7 (𝜑𝑋 𝑘 ∈ ℕ 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘))
42 smflimlem3.k . . . . . . 7 (𝜑𝐾 ∈ ℕ)
43 oveq2 6557 . . . . . . . . . . 11 (𝑘 = 𝐾 → (𝑖𝐻𝑘) = (𝑖𝐻𝐾))
4443adantr 480 . . . . . . . . . 10 ((𝑘 = 𝐾𝑖 ∈ (ℤ𝑚)) → (𝑖𝐻𝑘) = (𝑖𝐻𝐾))
4544iineq2dv 4479 . . . . . . . . 9 (𝑘 = 𝐾 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘) = 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾))
4645iuneq2d 4483 . . . . . . . 8 (𝑘 = 𝐾 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾))
4746eleq2d 2673 . . . . . . 7 (𝑘 = 𝐾 → (𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝑘) ↔ 𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾)))
4841, 42, 47eliind 38266 . . . . . 6 (𝜑𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾))
49 eqid 2610 . . . . . . 7 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾) = 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾)
5024, 49allbutfi 38557 . . . . . 6 (𝑋 𝑚𝑍 𝑖 ∈ (ℤ𝑚)(𝑖𝐻𝐾) ↔ ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ (𝑖𝐻𝐾))
5148, 50sylib 207 . . . . 5 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ (𝑖𝐻𝐾))
5228, 51jca 553 . . . 4 (𝜑 → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ dom (𝐹𝑖) ∧ ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ (𝑖𝐻𝐾)))
5324rexanuz2 13937 . . . 4 (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) ↔ (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ dom (𝐹𝑖) ∧ ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)𝑋 ∈ (𝑖𝐻𝐾)))
5452, 53sylibr 223 . . 3 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)))
55 simpll 786 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → 𝜑)
56 simpr 476 . . . . . . 7 ((𝜑𝑚𝑍) → 𝑚𝑍)
5724uztrn2 11581 . . . . . . 7 ((𝑚𝑍𝑖 ∈ (ℤ𝑚)) → 𝑖𝑍)
5856, 57sylan 487 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → 𝑖𝑍)
59 simprl 790 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ dom (𝐹𝑖))
60 simp3 1056 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝑖𝐻𝐾))
61 smflimlem3.h . . . . . . . . . . . . . . . . . 18 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘)))
6261a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝐻 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝐶‘(𝑚𝑃𝑘))))
63 oveq12 6558 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝑖𝑘 = 𝐾) → (𝑚𝑃𝑘) = (𝑖𝑃𝐾))
6463fveq2d 6107 . . . . . . . . . . . . . . . . . 18 ((𝑚 = 𝑖𝑘 = 𝐾) → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑖𝑃𝐾)))
6564adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝑍) ∧ (𝑚 = 𝑖𝑘 = 𝐾)) → (𝐶‘(𝑚𝑃𝑘)) = (𝐶‘(𝑖𝑃𝐾)))
66 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝑖𝑍)
6742adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝐾 ∈ ℕ)
68 fvex 6113 . . . . . . . . . . . . . . . . . 18 (𝐶‘(𝑖𝑃𝐾)) ∈ V
6968a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ V)
7062, 65, 66, 67, 69ovmpt2d 6686 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → (𝑖𝐻𝐾) = (𝐶‘(𝑖𝑃𝐾)))
71703adant3 1074 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍𝑋 ∈ (𝑖𝐻𝐾)) → (𝑖𝐻𝐾) = (𝐶‘(𝑖𝑃𝐾)))
7260, 71eleqtrd 2690 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾)))
73723expa 1257 . . . . . . . . . . . . 13 (((𝜑𝑖𝑍) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾)))
7473adantrl 748 . . . . . . . . . . . 12 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ (𝐶‘(𝑖𝑃𝐾)))
7574, 59elind 3760 . . . . . . . . . . 11 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖)))
76 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . 25 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
77 smflimlem3.s . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑆 ∈ SAlg)
7876, 77rabexd 4741 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
7978ralrimivw 2950 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
8079a1d 25 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑚𝑍 → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V))
8180imp 444 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚𝑍) → ∀𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
8281ralrimiva 2949 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
83 smflimlem3.p . . . . . . . . . . . . . . . . . . . . 21 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
8483fnmpt2 7127 . . . . . . . . . . . . . . . . . . . 20 (∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V → 𝑃 Fn (𝑍 × ℕ))
8582, 84syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 Fn (𝑍 × ℕ))
8685adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → 𝑃 Fn (𝑍 × ℕ))
87 fnovrn 6707 . . . . . . . . . . . . . . . . . 18 ((𝑃 Fn (𝑍 × ℕ) ∧ 𝑖𝑍𝐾 ∈ ℕ) → (𝑖𝑃𝐾) ∈ ran 𝑃)
8886, 66, 67, 87syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → (𝑖𝑃𝐾) ∈ ran 𝑃)
89 ovex 6577 . . . . . . . . . . . . . . . . . 18 (𝑖𝑃𝐾) ∈ V
90 eleq1 2676 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑖𝑃𝐾) → (𝑦 ∈ ran 𝑃 ↔ (𝑖𝑃𝐾) ∈ ran 𝑃))
9190anbi2d 736 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑖𝑃𝐾) → ((𝜑𝑦 ∈ ran 𝑃) ↔ (𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃)))
92 fveq2 6103 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑖𝑃𝐾) → (𝐶𝑦) = (𝐶‘(𝑖𝑃𝐾)))
93 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑖𝑃𝐾) → 𝑦 = (𝑖𝑃𝐾))
9492, 93eleq12d 2682 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑖𝑃𝐾) → ((𝐶𝑦) ∈ 𝑦 ↔ (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾)))
9591, 94imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑖𝑃𝐾) → (((𝜑𝑦 ∈ ran 𝑃) → (𝐶𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))))
96 smflimlem3.c . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦 ∈ ran 𝑃) → (𝐶𝑦) ∈ 𝑦)
9789, 95, 96vtocl 3232 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖𝑃𝐾) ∈ ran 𝑃) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))
9888, 97syldan 486 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ (𝑖𝑃𝐾))
9983a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
10015adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 = 𝑖𝑘 = 𝐾) → dom (𝐹𝑚) = dom (𝐹𝑖))
1018fveq1d 6105 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥))
10210imbi1i 338 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥)))
103 eqcom 2617 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥) ↔ ((𝐹𝑚)‘𝑥) = ((𝐹𝑖)‘𝑥))
104103imbi2i 325 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 = 𝑖 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑖)‘𝑥)))
105102, 104bitri 263 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖 = 𝑚 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑚)‘𝑥)) ↔ (𝑚 = 𝑖 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑖)‘𝑥)))
106101, 105mpbi 219 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑖 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑖)‘𝑥))
107106adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = 𝑖𝑘 = 𝐾) → ((𝐹𝑚)‘𝑥) = ((𝐹𝑖)‘𝑥))
108 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝐾 → (1 / 𝑘) = (1 / 𝐾))
109108oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝐾 → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝐾)))
110109adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑚 = 𝑖𝑘 = 𝐾) → (𝐴 + (1 / 𝑘)) = (𝐴 + (1 / 𝐾)))
111107, 110breq12d 4596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑚 = 𝑖𝑘 = 𝐾) → (((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘)) ↔ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))))
112100, 111rabeqbidv 3168 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑖𝑘 = 𝐾) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))})
11315ineq2d 3776 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 = 𝑖 → (𝑠 ∩ dom (𝐹𝑚)) = (𝑠 ∩ dom (𝐹𝑖)))
114113adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝑖𝑘 = 𝐾) → (𝑠 ∩ dom (𝐹𝑚)) = (𝑠 ∩ dom (𝐹𝑖)))
115112, 114eqeq12d 2625 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝑖𝑘 = 𝐾) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)) ↔ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))))
116115rabbidv 3164 . . . . . . . . . . . . . . . . . 18 ((𝑚 = 𝑖𝑘 = 𝐾) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))})
117116adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖𝑍) ∧ (𝑚 = 𝑖𝑘 = 𝐾)) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))})
118 eqid 2610 . . . . . . . . . . . . . . . . . . 19 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))}
119118, 77rabexd 4741 . . . . . . . . . . . . . . . . . 18 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))} ∈ V)
120119adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑍) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))} ∈ V)
12199, 117, 66, 67, 120ovmpt2d 6686 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑍) → (𝑖𝑃𝐾) = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))})
12298, 121eleqtrd 2690 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑍) → (𝐶‘(𝑖𝑃𝐾)) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))})
123 ineq1 3769 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐶‘(𝑖𝑃𝐾)) → (𝑠 ∩ dom (𝐹𝑖)) = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖)))
124123eqeq2d 2620 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐶‘(𝑖𝑃𝐾)) → ({𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖)) ↔ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖))))
125124elrab 3331 . . . . . . . . . . . . . . 15 ((𝐶‘(𝑖𝑃𝐾)) ∈ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = (𝑠 ∩ dom (𝐹𝑖))} ↔ ((𝐶‘(𝑖𝑃𝐾)) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖))))
126122, 125sylib 207 . . . . . . . . . . . . . 14 ((𝜑𝑖𝑍) → ((𝐶‘(𝑖𝑃𝐾)) ∈ 𝑆 ∧ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖))))
127126simprd 478 . . . . . . . . . . . . 13 ((𝜑𝑖𝑍) → {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} = ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖)))
128127eqcomd 2616 . . . . . . . . . . . 12 ((𝜑𝑖𝑍) → ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖)) = {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))})
129128adantr 480 . . . . . . . . . . 11 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → ((𝐶‘(𝑖𝑃𝐾)) ∩ dom (𝐹𝑖)) = {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))})
13075, 129eleqtrd 2690 . . . . . . . . . 10 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → 𝑋 ∈ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))})
131 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝐹𝑖)‘𝑥) = ((𝐹𝑖)‘𝑋))
132 eqidd 2611 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐴 + (1 / 𝐾)) = (𝐴 + (1 / 𝐾)))
133131, 132breq12d 4596 . . . . . . . . . . 11 (𝑥 = 𝑋 → (((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾)) ↔ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))
134133elrab 3331 . . . . . . . . . 10 (𝑋 ∈ {𝑥 ∈ dom (𝐹𝑖) ∣ ((𝐹𝑖)‘𝑥) < (𝐴 + (1 / 𝐾))} ↔ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))
135130, 134sylib 207 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))
136135simprd 478 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))
13759, 136jca 553 . . . . . . 7 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾))) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))
138137ex 449 . . . . . 6 ((𝜑𝑖𝑍) → ((𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))))
13955, 58, 138syl2anc 691 . . . . 5 (((𝜑𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))))
140139ralimdva 2945 . . . 4 ((𝜑𝑚𝑍) → (∀𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → ∀𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))))
141140reximdva 3000 . . 3 (𝜑 → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ 𝑋 ∈ (𝑖𝐻𝐾)) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))))
14254, 141mpd 15 . 2 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))))
143 simprl 790 . . . . . . 7 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → 𝑋 ∈ dom (𝐹𝑖))
144 nfv 1830 . . . . . . . . . . . 12 𝑚((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
145 eleq1 2676 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝑚𝑍𝑖𝑍))
146145anbi2d 736 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝜑𝑚𝑍) ↔ (𝜑𝑖𝑍)))
147 fveq2 6103 . . . . . . . . . . . . . 14 (𝑚 = 𝑖 → (𝐹𝑚) = (𝐹𝑖))
148147, 15feq12d 5946 . . . . . . . . . . . . 13 (𝑚 = 𝑖 → ((𝐹𝑚):dom (𝐹𝑚)⟶ℝ ↔ (𝐹𝑖):dom (𝐹𝑖)⟶ℝ))
149146, 148imbi12d 333 . . . . . . . . . . . 12 (𝑚 = 𝑖 → (((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ) ↔ ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)))
15077adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝑆 ∈ SAlg)
151 smflimlem3.m . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
152 eqid 2610 . . . . . . . . . . . . 13 dom (𝐹𝑚) = dom (𝐹𝑚)
153150, 151, 152smff 39618 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
154144, 149, 153chvar 2250 . . . . . . . . . . 11 ((𝜑𝑖𝑍) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
155154adantr 480 . . . . . . . . . 10 (((𝜑𝑖𝑍) ∧ 𝑋 ∈ dom (𝐹𝑖)) → (𝐹𝑖):dom (𝐹𝑖)⟶ℝ)
156 simpr 476 . . . . . . . . . 10 (((𝜑𝑖𝑍) ∧ 𝑋 ∈ dom (𝐹𝑖)) → 𝑋 ∈ dom (𝐹𝑖))
157155, 156ffvelrnd 6268 . . . . . . . . 9 (((𝜑𝑖𝑍) ∧ 𝑋 ∈ dom (𝐹𝑖)) → ((𝐹𝑖)‘𝑋) ∈ ℝ)
158157adantrr 749 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹𝑖)‘𝑋) ∈ ℝ)
159 smflimlem3.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
16042nnrecred 10943 . . . . . . . . . 10 (𝜑 → (1 / 𝐾) ∈ ℝ)
161159, 160readdcld 9948 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 𝐾)) ∈ ℝ)
162161ad2antrr 758 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + (1 / 𝐾)) ∈ ℝ)
163 smflimlem3.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
164163rpred 11748 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
165159, 164readdcld 9948 . . . . . . . . 9 (𝜑 → (𝐴 + 𝑌) ∈ ℝ)
166165ad2antrr 758 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + 𝑌) ∈ ℝ)
167 simprr 792 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))
168 smflimlem3.l . . . . . . . . . 10 (𝜑 → (1 / 𝐾) < 𝑌)
169160, 164, 159, 168ltadd2dd 10075 . . . . . . . . 9 (𝜑 → (𝐴 + (1 / 𝐾)) < (𝐴 + 𝑌))
170169ad2antrr 758 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝐴 + (1 / 𝐾)) < (𝐴 + 𝑌))
171158, 162, 166, 167, 170lttrd 10077 . . . . . . 7 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌))
172143, 171jca 553 . . . . . 6 (((𝜑𝑖𝑍) ∧ (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾)))) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌)))
173172ex 449 . . . . 5 ((𝜑𝑖𝑍) → ((𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌))))
17455, 58, 173syl2anc 691 . . . 4 (((𝜑𝑚𝑍) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → (𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌))))
175174ralimdva 2945 . . 3 ((𝜑𝑚𝑍) → (∀𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → ∀𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌))))
176175reximdva 3000 . 2 (𝜑 → (∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + (1 / 𝐾))) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌))))
177142, 176mpd 15 1 (𝜑 → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)(𝑋 ∈ dom (𝐹𝑖) ∧ ((𝐹𝑖)‘𝑋) < (𝐴 + 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173   ∩ cin 3539  ∪ ciun 4455  ∩ ciin 4456   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  ℝcr 9814  1c1 9816   + caddc 9818   < clt 9953   / cdiv 10563  ℕcn 10897  ℤ≥cuz 11563  ℝ+crp 11708   ⇝ cli 14063  SAlgcsalg 39204  SMblFncsmblfn 39586 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-z 11255  df-uz 11564  df-rp 11709  df-ioo 12050  df-ico 12052  df-smblfn 39587 This theorem is referenced by:  smflimlem4  39660
 Copyright terms: Public domain W3C validator