Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfdiv Structured version   Visualization version   GIF version

Theorem smfdiv 39682
 Description: The fraction of two sigma-measurable functions is measurable. Proposition 121E (e) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfdiv.x 𝑥𝜑
smfdiv.s (𝜑𝑆 ∈ SAlg)
smfdiv.a (𝜑𝐴𝑉)
smfdiv.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfdiv.c (𝜑𝐶𝑊)
smfdiv.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfdiv.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfdiv.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfdiv.e 𝐸 = {𝑥𝐶𝐷 ≠ 0}
Assertion
Ref Expression
smfdiv (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐸
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem smfdiv
StepHypRef Expression
1 smfdiv.x . . 3 𝑥𝜑
2 elinel1 3761 . . . . . . 7 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐴)
32adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝑥𝐴)
4 smfdiv.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
53, 4syldan 486 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐵 ∈ ℝ)
65recnd 9947 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐵 ∈ ℂ)
7 smfdiv.e . . . . . . . . 9 𝐸 = {𝑥𝐶𝐷 ≠ 0}
8 ssrab2 3650 . . . . . . . . 9 {𝑥𝐶𝐷 ≠ 0} ⊆ 𝐶
97, 8eqsstri 3598 . . . . . . . 8 𝐸𝐶
10 elinel2 3762 . . . . . . . 8 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐸)
119, 10sseldi 3566 . . . . . . 7 (𝑥 ∈ (𝐴𝐸) → 𝑥𝐶)
1211adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝑥𝐶)
13 smfdiv.d . . . . . 6 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
1412, 13syldan 486 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ∈ ℝ)
1514recnd 9947 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ∈ ℂ)
167eleq2i 2680 . . . . . . . 8 (𝑥𝐸𝑥 ∈ {𝑥𝐶𝐷 ≠ 0})
1716biimpi 205 . . . . . . 7 (𝑥𝐸𝑥 ∈ {𝑥𝐶𝐷 ≠ 0})
18 rabidim2 38313 . . . . . . 7 (𝑥 ∈ {𝑥𝐶𝐷 ≠ 0} → 𝐷 ≠ 0)
1917, 18syl 17 . . . . . 6 (𝑥𝐸𝐷 ≠ 0)
2010, 19syl 17 . . . . 5 (𝑥 ∈ (𝐴𝐸) → 𝐷 ≠ 0)
2120adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐸)) → 𝐷 ≠ 0)
226, 15, 21divrecd 10683 . . 3 ((𝜑𝑥 ∈ (𝐴𝐸)) → (𝐵 / 𝐷) = (𝐵 · (1 / 𝐷)))
231, 22mpteq2da 4671 . 2 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) = (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 · (1 / 𝐷))))
24 smfdiv.s . . 3 (𝜑𝑆 ∈ SAlg)
25 smfdiv.a . . 3 (𝜑𝐴𝑉)
26 1red 9934 . . . 4 ((𝜑𝑥𝐸) → 1 ∈ ℝ)
279sseli 3564 . . . . . 6 (𝑥𝐸𝑥𝐶)
2827adantl 481 . . . . 5 ((𝜑𝑥𝐸) → 𝑥𝐶)
2928, 13syldan 486 . . . 4 ((𝜑𝑥𝐸) → 𝐷 ∈ ℝ)
3019adantl 481 . . . 4 ((𝜑𝑥𝐸) → 𝐷 ≠ 0)
3126, 29, 30redivcld 10732 . . 3 ((𝜑𝑥𝐸) → (1 / 𝐷) ∈ ℝ)
32 smfdiv.m . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
33 smfdiv.c . . . 4 (𝜑𝐶𝑊)
34 smfdiv.n . . . 4 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
351, 24, 33, 13, 34, 7smfrec 39674 . . 3 (𝜑 → (𝑥𝐸 ↦ (1 / 𝐷)) ∈ (SMblFn‘𝑆))
361, 24, 25, 4, 31, 32, 35smfmul 39680 . 2 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 · (1 / 𝐷))) ∈ (SMblFn‘𝑆))
3723, 36eqeltrd 2688 1 (𝜑 → (𝑥 ∈ (𝐴𝐸) ↦ (𝐵 / 𝐷)) ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  Ⅎwnf 1699   ∈ wcel 1977   ≠ wne 2780  {crab 2900   ∩ cin 3539   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   · cmul 9820   / cdiv 10563  SAlgcsalg 39204  SMblFncsmblfn 39586 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-s4 13446  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-rest 15906  df-salg 39205  df-smblfn 39587 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator