Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sinhalfpilem Structured version   Visualization version   GIF version

Theorem sinhalfpilem 24019
 Description: Lemma for sinhalfpi 24024 and coshalfpi 24025. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
sinhalfpilem ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)

Proof of Theorem sinhalfpilem
StepHypRef Expression
1 0lt1 10429 . . . . . 6 0 < 1
2 0re 9919 . . . . . . 7 0 ∈ ℝ
3 1re 9918 . . . . . . 7 1 ∈ ℝ
42, 3ltnsymi 10035 . . . . . 6 (0 < 1 → ¬ 1 < 0)
51, 4ax-mp 5 . . . . 5 ¬ 1 < 0
6 lt0neg1 10413 . . . . . 6 (1 ∈ ℝ → (1 < 0 ↔ 0 < -1))
73, 6ax-mp 5 . . . . 5 (1 < 0 ↔ 0 < -1)
85, 7mtbi 311 . . . 4 ¬ 0 < -1
9 pire 24014 . . . . . . . 8 π ∈ ℝ
109rehalfcli 11158 . . . . . . 7 (π / 2) ∈ ℝ
11 2re 10967 . . . . . . . 8 2 ∈ ℝ
12 pipos 24016 . . . . . . . 8 0 < π
13 2pos 10989 . . . . . . . 8 0 < 2
149, 11, 12, 13divgt0ii 10820 . . . . . . 7 0 < (π / 2)
15 4re 10974 . . . . . . . . 9 4 ∈ ℝ
16 pigt2lt4 24012 . . . . . . . . . 10 (2 < π ∧ π < 4)
1716simpri 477 . . . . . . . . 9 π < 4
189, 15, 17ltleii 10039 . . . . . . . 8 π ≤ 4
1911, 13pm3.2i 470 . . . . . . . . . 10 (2 ∈ ℝ ∧ 0 < 2)
20 ledivmul 10778 . . . . . . . . . 10 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) ≤ 2 ↔ π ≤ (2 · 2)))
219, 11, 19, 20mp3an 1416 . . . . . . . . 9 ((π / 2) ≤ 2 ↔ π ≤ (2 · 2))
22 2t2e4 11054 . . . . . . . . . 10 (2 · 2) = 4
2322breq2i 4591 . . . . . . . . 9 (π ≤ (2 · 2) ↔ π ≤ 4)
2421, 23bitr2i 264 . . . . . . . 8 (π ≤ 4 ↔ (π / 2) ≤ 2)
2518, 24mpbi 219 . . . . . . 7 (π / 2) ≤ 2
26 0xr 9965 . . . . . . . 8 0 ∈ ℝ*
27 elioc2 12107 . . . . . . . 8 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → ((π / 2) ∈ (0(,]2) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) ≤ 2)))
2826, 11, 27mp2an 704 . . . . . . 7 ((π / 2) ∈ (0(,]2) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) ≤ 2))
2910, 14, 25, 28mpbir3an 1237 . . . . . 6 (π / 2) ∈ (0(,]2)
30 sin02gt0 14761 . . . . . 6 ((π / 2) ∈ (0(,]2) → 0 < (sin‘(π / 2)))
3129, 30ax-mp 5 . . . . 5 0 < (sin‘(π / 2))
32 breq2 4587 . . . . 5 ((sin‘(π / 2)) = -1 → (0 < (sin‘(π / 2)) ↔ 0 < -1))
3331, 32mpbii 222 . . . 4 ((sin‘(π / 2)) = -1 → 0 < -1)
348, 33mto 187 . . 3 ¬ (sin‘(π / 2)) = -1
35 sq1 12820 . . . . . 6 (1↑2) = 1
36 resincl 14709 . . . . . . . . . . . . . 14 ((π / 2) ∈ ℝ → (sin‘(π / 2)) ∈ ℝ)
3710, 36ax-mp 5 . . . . . . . . . . . . 13 (sin‘(π / 2)) ∈ ℝ
3837, 31gt0ne0ii 10443 . . . . . . . . . . . 12 (sin‘(π / 2)) ≠ 0
3938neii 2784 . . . . . . . . . . 11 ¬ (sin‘(π / 2)) = 0
40 2ne0 10990 . . . . . . . . . . . . . 14 2 ≠ 0
4140neii 2784 . . . . . . . . . . . . 13 ¬ 2 = 0
429recni 9931 . . . . . . . . . . . . . . . . . 18 π ∈ ℂ
43 2cn 10968 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
4442, 43, 40divcan2i 10647 . . . . . . . . . . . . . . . . 17 (2 · (π / 2)) = π
4544fveq2i 6106 . . . . . . . . . . . . . . . 16 (sin‘(2 · (π / 2))) = (sin‘π)
4610recni 9931 . . . . . . . . . . . . . . . . 17 (π / 2) ∈ ℂ
47 sin2t 14746 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (sin‘(2 · (π / 2))) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))))
4846, 47ax-mp 5 . . . . . . . . . . . . . . . 16 (sin‘(2 · (π / 2))) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2))))
4945, 48eqtr3i 2634 . . . . . . . . . . . . . . 15 (sin‘π) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2))))
50 sinpi 24013 . . . . . . . . . . . . . . 15 (sin‘π) = 0
5149, 50eqtr3i 2634 . . . . . . . . . . . . . 14 (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))) = 0
52 sincl 14695 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (sin‘(π / 2)) ∈ ℂ)
5346, 52ax-mp 5 . . . . . . . . . . . . . . . 16 (sin‘(π / 2)) ∈ ℂ
54 coscl 14696 . . . . . . . . . . . . . . . . 17 ((π / 2) ∈ ℂ → (cos‘(π / 2)) ∈ ℂ)
5546, 54ax-mp 5 . . . . . . . . . . . . . . . 16 (cos‘(π / 2)) ∈ ℂ
5653, 55mulcli 9924 . . . . . . . . . . . . . . 15 ((sin‘(π / 2)) · (cos‘(π / 2))) ∈ ℂ
5743, 56mul0ori 10554 . . . . . . . . . . . . . 14 ((2 · ((sin‘(π / 2)) · (cos‘(π / 2)))) = 0 ↔ (2 = 0 ∨ ((sin‘(π / 2)) · (cos‘(π / 2))) = 0))
5851, 57mpbi 219 . . . . . . . . . . . . 13 (2 = 0 ∨ ((sin‘(π / 2)) · (cos‘(π / 2))) = 0)
5941, 58mtpor 1686 . . . . . . . . . . . 12 ((sin‘(π / 2)) · (cos‘(π / 2))) = 0
6053, 55mul0ori 10554 . . . . . . . . . . . 12 (((sin‘(π / 2)) · (cos‘(π / 2))) = 0 ↔ ((sin‘(π / 2)) = 0 ∨ (cos‘(π / 2)) = 0))
6159, 60mpbi 219 . . . . . . . . . . 11 ((sin‘(π / 2)) = 0 ∨ (cos‘(π / 2)) = 0)
6239, 61mtpor 1686 . . . . . . . . . 10 (cos‘(π / 2)) = 0
6362oveq1i 6559 . . . . . . . . 9 ((cos‘(π / 2))↑2) = (0↑2)
64 sq0 12817 . . . . . . . . 9 (0↑2) = 0
6563, 64eqtri 2632 . . . . . . . 8 ((cos‘(π / 2))↑2) = 0
6665oveq2i 6560 . . . . . . 7 (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = (((sin‘(π / 2))↑2) + 0)
67 sincossq 14745 . . . . . . . 8 ((π / 2) ∈ ℂ → (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = 1)
6846, 67ax-mp 5 . . . . . . 7 (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = 1
6966, 68eqtr3i 2634 . . . . . 6 (((sin‘(π / 2))↑2) + 0) = 1
7053sqcli 12806 . . . . . . 7 ((sin‘(π / 2))↑2) ∈ ℂ
7170addid1i 10102 . . . . . 6 (((sin‘(π / 2))↑2) + 0) = ((sin‘(π / 2))↑2)
7235, 69, 713eqtr2ri 2639 . . . . 5 ((sin‘(π / 2))↑2) = (1↑2)
73 ax-1cn 9873 . . . . . 6 1 ∈ ℂ
7453, 73sqeqori 12838 . . . . 5 (((sin‘(π / 2))↑2) = (1↑2) ↔ ((sin‘(π / 2)) = 1 ∨ (sin‘(π / 2)) = -1))
7572, 74mpbi 219 . . . 4 ((sin‘(π / 2)) = 1 ∨ (sin‘(π / 2)) = -1)
7675ori 389 . . 3 (¬ (sin‘(π / 2)) = 1 → (sin‘(π / 2)) = -1)
7734, 76mt3 191 . 2 (sin‘(π / 2)) = 1
7877, 62pm3.2i 470 1 ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  -cneg 10146   / cdiv 10563  2c2 10947  4c4 10949  (,]cioc 12047  ↑cexp 12722  sincsin 14633  cosccos 14634  πcpi 14636 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437 This theorem is referenced by:  sinhalfpi  24024  coshalfpi  24025
 Copyright terms: Public domain W3C validator